Multivariable Calculus 1st edition

Textbook Cover

David B. Damiano and Margaret N. Freije
Publisher: Jones and Bartlett Learning

eBook

eBook

Your students have access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework and eBook
Higher Education Single Term N/A
High School N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Euclidean Space and Vectors
    • 1.1: The Cartesian Coordinate System (12)
    • 1.2: Vectors (4)
    • 1.3: Vector Products (15)
    • 1.4: Lines and Planes (21)
    • 1.5: End of Chapter Exercises

  • Chapter 2: Parametric Curves and Vector Fields
    • 2.1: Parametric Representations of Curves (13)
    • 2.2: The Derivative of a Parametrization (13)
    • 2.3: Modeling with Parametric Curves
    • 2.4: Vector Fields (11)
    • 2.5: Modeling with Vector Fields
    • 2.6: End of Chapter Exercises

  • Chapter 3: Differentiation of Real-Valued Functions
    • 3.1: Representation and Graphical Analysis of Functions (4)
    • 3.2: Directional and Partial Derivatives (23)
    • 3.3: Limits and Continuous Functions (5)
    • 3.4: Differentiable Functions (16)
    • 3.5: The Chain Rule and the Gradient (25)
    • 3.6: End of Chapter Exercises

  • Chapter 4: Critical Points and Optimization
    • 4.1: Graphical Analysis of Critical Points (20)
    • 4.2: Algebraic Classification of Critical Points (17)
    • 4.3: Constrained Optimization in the Plane (16)
    • 4.4: Constrained Optimization in Space
    • 4.5: End of Chapter Exercises

  • Chapter 5: Integration
    • 5.1: Riemann Sums—An Intuitive Introduction (4)
    • 5.2: Integration of Functions of Two Variables (31)
    • 5.3: Integration in Polar Coordinates (20)
    • 5.4: Integration of Functions of Three Variables (29)
    • 5.5: Integration in Cylindrical Coordinates (12)
    • 5.6: Integration in Spherical Coordinates (8)
    • 5.7: End of Chapter Exercises

  • Chapter 6: Integration on Curves
    • 6.1: Path Integrals (11)
    • 6.2: Line Integrals (17)
    • 6.3: Integration over Closed Curves (15)
    • 6.4: End of Chapter Exercises

  • Chapter 7: Integration on Surfaces
    • 7.1: Parametrization of Surfaces (23)
    • 7.2: Surface Integrals (15)
    • 7.3: Flux Integrals (15)
    • 7.4: The Divergence Theorem (2)
    • 7.5: Curl and Stokes' Theorem (18)
    • 7.6: Three Proofs
    • 7.7: End of Chapter Exercises

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Euclidean Space and Vectors
1.1 12 003 004 005 009 009a 009b 009c 009d 013 013a 013b 013c
1.2 4 004 009 010 013
1.3 15 001 001a 001b 001c 001d 001e 001f 002 006 007 007a 007b 007c 007d 009
1.4 21 001 002 002a 002b 002c 002d 007 008 009 009a 009b 009c 011 011a 011b 011c 011d 013 013a 013b 013c
Chapter 2: Parametric Curves and Vector Fields
2.1 13 001 001a 001b 001c 001d 008 008a 008b 008c 008d 011 014 016
2.2 13 001 001a 001b 001c 001d 002 002a 002b 002c 002d 005 008 009
2.4 11 002 003 004 004a 004b 004c 004d 005 005a 005b 005c
Chapter 3: Differentiation of Real-Valued Functions
3.1 4 008 008a 008b 008c
3.2 23 006 006a 006b 006c 006d 007 007a 007b 007c 007d 008 008a 008b 008c 009 010 010a 010b 010c 010d 012 012a 012b
3.3 5 003 005 007 008 010
3.4 16 002 002a 002b 002c 002d 003 003a 003b 003c 003d 004 005 005a 005b 005c 005d
3.5 25 001 001a 001b 001c 001d 002 002a 002b 002c 002d 003 003a 003b 003c 003d 006 006a 006b 006c 006d 007 007a 007b 007c 007d
Chapter 4: Critical Points and Optimization
4.1 20 001 001a 001b 001c 001d 002 002a 002b 002c 002d 004 004a 004b 004c 004d 010 010a 010b 010c 010d
4.2 17 003 003a 003b 003c 003d 004 004a 004b 004c 004d 004e 005 005a 005b 005c 005d 008
4.3 16 001 001a 001b 001c 001d 002 002a 002b 002c 002d 003 003a 003b 003c 003d 008
Chapter 5: Integration
5.1 4 004 005 007 012
5.2 31 002 002a 002b 002c 002d 003 003a 003b 003c 003d 004 004a 004b 004c 004d 008 008a 008b 008c 008d 009 009a 009b 009c 009d 009e 010 011 011a 011b 011c
5.3 20 002 003 004 005 005a 005b 005c 005d 005e 005f 006 006a 006b 006c 006d 007 007a 007b 007c 008
5.4 29 001 001a 001b 001c 001d 003 003a 003b 003c 003d 003e 003f 004 004a 004b 004c 004d 004e 006 006a 006b 006c 006d 008 008a 008b 008c 008d 009
5.5 12 001 002 003 007 007a 007b 007c 008 008a 008b 008c 008d
5.6 8 001 003 005 005a 005b 005c 005d 006
Chapter 6: Integration on Curves
6.1 11 002 002a 002b 002c 003 004 005 006 006a 006b 006c
6.2 17 001 001a 001b 001c 002 002a 002b 002c 006 006a 006b 006c 006d 007 007a 007b 007c
6.3 15 001 001a 001b 001c 001d 002 002a 002b 002c 003 006 008 008a 008b 008c
Chapter 7: Integration on Surfaces
7.1 23 002 002a 002b 002c 002d 003 003a 003b 003c 003d 003e 005 005a 005b 005c 005d 005e 012 012a 012b 012c 012d 012e
7.2 15 001 001a 001b 001c 001d 002 002a 002b 002c 003 003bi 003bii 003biii 003biv 004
7.3 15 001 001a 001b 001c 002 002a 002b 002c 005 007 007a 007b 007c 008 011
7.4 2 003 005
7.5 18 001 001a 001b 001c 001d 008 008a 008b 008c 008d 009 009a 009b 009c 010 010a 010b 010c
Total 435