College Physics 1st edition

Textbook Cover

Roger A. Freedman, Todd G. Ruskell, Philip R. Kesten, and David L. Tauck
Publisher: W. H. Freeman

enhanced content

Premium WebAssign

Includes interactive exercises with in-depth tutorials and interactive conceptual resources that allow students to visualize concepts and see cause-and-effect relationships through online simulations.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook eBook Upgrade
Higher Education Single Term $41.19 $62.44 $21.25
Higher Education Multi-Term $69.96 $98.01 $28.05
High School $15.50 $35.50 $20.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Introduction to Physics
    • 1: Conceptual Questions (8)
    • 1: Multiple-Choice Problems (9)
    • 1: Estimation/Numerical Analysis (5)
    • 1.1: Physicists use a special language—part words, part equations—to describe the natural world
    • 1.2: Success in physics requires well-developed problem-solving skills
    • 1.3: Measurements in physics are based on standard units of time, length, and mass (14)
    • 1.4: Correct use of significant figures helps keep track of uncertainties in numerical values (3)
    • 1.5: Dimensional analysis is a powerful way to check the results of a physics calculation (6)
    • 1: General Problems (9)
    • 1: Extra Problems
    • 1: WebAssign Tutorials (1)

  • Chapter 2: Linear Motion
    • 2: Conceptual Questions (15)
    • 2: Multiple-Choice Problems (6)
    • 2: Estimation/Numerical Analysis (13)
    • 2.1: Studying motion in a straight line is the first step in understanding physics
    • 2.2: Constant velocity means moving at a steady speed in the same direction
    • 2.3: Solving straight-line motion problems: Constant velocity (11)
    • 2.4: Velocity is the rate of change of position, and acceleration is the rate of change of velocity
    • 2.5: Constant acceleration means velocity changes at a steady rate
    • 2.6: Solving straight-line motion problems: Constant acceleration (9)
    • 2.7: Objects falling freely near Earth's surface have constant acceleration
    • 2.8: Solving straight-line motion problems: Free fall (8)
    • 2: General Problems (17)
    • 2: Extra Problems
    • 2: WebAssign Tutorials (6)

  • Chapter 3: Motion in Two or Three Dimensions
    • 3: Conceptual Questions (15)
    • 3: Multiple-Choice Problems (10)
    • 3: Estimation/Numerical Analysis (5)
    • 3.1: The ideas of linear motion help us understand motion in two or three dimensions
    • 3.2: A vector quantity has both a magnitude and a direction
    • 3.3: Vectors can be described in terms of components
    • 3.4: Using components greatly simplifies vector calculations (10)
    • 3.5: For motion in a plane, velocity and acceleration are vector quantities (4)
    • 3.6: A Projectile moves in a plane and has a constant acceleration
    • 3.7: You can solve projectile motion problems using techniques learned for straight-line motion (7)
    • 3.8: An object moving in a circle is accelerating even if its speed is constant
    • 3.9: Any problem that involves uniform circular motion uses the idea of centripetal acceleration (13)
    • 3.10: The vestibular system of the ear allows us to sense acceleration
    • 3: General Problems (21)
    • 3: Extra Problems (9)
    • 3: WebAssign Tutorials (3)

  • Chapter 4: Forces and Motion I: Newton's Laws
    • 4: Conceptual Questions (23)
    • 4: Multiple-Choice Problems (11)
    • 4: Estimation/Numerical Analysis (11)
    • 4.1: How objects move is determined by the forces that act on them
    • 4.2: If a net external force acts on an object, the object accelerates (4)
    • 4.3: Mass, weight, and inertia are distinct but related concepts (6)
    • 4.4: Making a free-body diagram is essential in solving any problem involving forces (4)
    • 4.5: Newton's third law relates the forces that two objects exert on each other
    • 4.6: All problems involving forces can be solved using the same series of steps (18)
    • 4.7: Fish use Newton's third law and a combination of forces to move through the water
    • 4: General Problems (32)
    • 4: Extra Problems (13)
    • 4: WebAssign Tutorials (5)

  • Chapter 5: Forces and Motion II: Applications
    • 5: Conceptual Questions (19)
    • 5: Multiple-Choice Problems (9)
    • 5: Estimation/Numerical Analysis (9)
    • 5.1: We can use Newton's laws in situations beyond those we have already studied
    • 5.2: The static friction force changes magnitude to offset other applied forces (3)
    • 5.3: The kinetic friction force on a sliding object has a constant magnitude (6)
    • 5.4: Problems involving static and kinetic friction are like any other problem with forces (7)
    • 5.5: An object moving through air or water experiences a drag force (4)
    • 5.6: In uniform circular motion, the net force points toward the center of the circle (12)
    • 5: General Problems (21)
    • 5: Extra Problems (6)
    • 5: WebAssign Tutorials (7)

  • Chapter 6: Work and Energy
    • 6: Conceptual Questions (18)
    • 6: Multiple-Choice Problems (8)
    • 6: Estimation/Numerical Analysis (9)
    • 6.1: The ideas of work and energy are intimately related
    • 6.2: The work that a constant force does on a moving object depends on the magnitude and direction of the force (6)
    • 6.3: Kinetic energy and the work-energy theorem give us an alternative way to express Newton's second law (5)
    • 6.4: The work-energy theorem can simplify many physics problems (5)
    • 6.5: The work-energy theorem is also valid for curved paths and varying forces (3)
    • 6.6: Potential energy is energy related to an object's position (9)
    • 6.7: If only conservative forces do work, total mechanical energy is conserved (10)
    • 6.8: Energy conservation is an important tool for solving a wide variety of problems (4)
    • 6: General Problems (19)
    • 6: Extra Problems (9)
    • 6: WebAssign Tutorials (6)

  • Chapter 7: Momentum, Collisions, and the Center of Mass
    • 7: Conceptual Questions (14)
    • 7: Multiple-Choice Problems (10)
    • 7: Estimation/Numerical Analysis (8)
    • 7.1: Newton's third law helps lead us to the idea of momentum
    • 7.2: Momentum is a vector that depends on an object's mass, speed, and direction of motion (6)
    • 7.3: The total momentum of a system of objects is conserved under certain conditions (7)
    • 7.4: In an inelastic collision, some of the mechanical energy is lost (5)
    • 7.5: In an elastic collision, both momentum and mechanical energy are conserved (4)
    • 7.6: What happens in a collision is related to the time the colliding objects are in contact (6)
    • 7.7: The center of mass of a system moves as though all of the system's mass were concentrated there (3)
    • 7: General Problems (21)
    • 7: Extra Problems (12)
    • 7: WebAssign Tutorials (5)

  • Chapter 8: Rotational Motion
    • 8: Conceptual Questions (22)
    • 8: Multiple-Choice Problems (10)
    • 8: Estimation/Numerical Analysis (11)
    • 8.1: Rotation is an important and ubiquitous kind of motion
    • 8.2: An object's rotational kinetic energy is related to its angular velocity and how its mass is distributed (8)
    • 8.3: An object's moment of inertia depends on its mass distribution and the choice of rotation axis (11)
    • 8.4: Conservation of mechanical energy also applies to rotating objects (9)
    • 8.5: The equations for rotational kinematics are almost identical to those for linear motion (7)
    • 8.6: Torque is to rotation as force is to translation (8)
    • 8.7: The techniques used for solving problems with Newton's second law also apply to rotation problems
    • 8.8: Angular momentum is conserved when there is zero net torque on a system (7)
    • 8.9: Rotational quantities such as angular momentum and torque are actually vectors
    • 8: General Problems (32)
    • 8: Extra Problems (10)
    • 8: WebAssign Tutorials (9)

  • Chapter 9: Elastic Properties of Matter: Stress and Strain
    • 9: Conceptual Questions (16)
    • 9: Multiple-Choice Problems (10)
    • 9: Estimation/Numerical Analysis (9)
    • 9.1: When an object is under stress, it deforms
    • 9.2: An object changes length when under tensile or compressive stress
    • 9.3: Solving stress-strain problems: Tension and compression (13)
    • 9.4: An object expands or shrinks when under volume stress
    • 9.5: Solving stress-strain problems: Volume stress (4)
    • 9.6: A solid object changes shape when under shear stress
    • 9.7: Solving stress-strain problems: Shear stress (6)
    • 9.8: Objects deform permanently or fail when placed under too much stress
    • 9.9: Solving stress-strain problems: From elastic behavior to failure (2)
    • 9: General Problems (20)
    • 9: Extra Problems (7)
    • 9: WebAssign Tutorials (1)

  • Chapter 10: Gravitation
    • 10: Conceptual Questions (16)
    • 10: Multiple-Choice Problems (9)
    • 10: Estimation/Numerical Analysis (7)
    • 10.1: Gravitation is a force of universal importance
    • 10.2: Newton's law of universal gravitation explains the orbit of the Moon (11)
    • 10.3: The gravitational potential energy of two objects is negative and increases toward zero as the objects are moved farther apart (5)
    • 10.4: Newton's law of universal gravitation explains Kepler's laws for the orbits of planets and satellites (10)
    • 10.5: Apparent weightlessness can have major physiological effects on space travelers
    • 10: General Problems (12)
    • 10: Extra Problems (11)
    • 10: WebAssign Tutorials (3)

  • Chapter 11: Fluids
    • 11: Conceptual Questions (17)
    • 11: Multiple-Choice Problems (10)
    • 11: Estimation/Numerical Analysis (7)
    • 11.1: Liquids and gases are both examples of fluids
    • 11.2: Density measures the amount of mass per unit volume (8)
    • 11.3: Pressure in a fluid is caused by the impact of molecules (3)
    • 11.4: In a fluid at rest, pressure increases with increasing depth (5)
    • 11.5: Scientists and medical professionals use various units for measuring fluid pressure (5)
    • 11.6: A difference in pressure on opposite sides of an object produces a net force on the object (5)
    • 11.7: A pressure increase at one point in a fluid causes a pressure increase throughout the fluid (4)
    • 11.8: Archimedes' principle helps us understand buoyancy (6)
    • 11.9: Fluids in motion behave differently depending on the flow speed and the fluid viscosity (7)
    • 11.10: Bernoulli's equation helps us relate pressure and speed in fluid motion (4)
    • 11.11: Viscosity is important in many types of fluid flow (4)
    • 11.12: Surface tension explains the shape of raindrops and how respiration is possible
    • 11: General Problems (19)
    • 11: Extra Problems (4)
    • 11: WebAssign Tutorials (7)

  • Chapter 12: Oscillations
    • 12: Conceptual Questions (14)
    • 12: Multiple-Choice Problems (10)
    • 12: Estimation/Numerical Analysis (14)
    • 12.1: We live in a world of oscillations
    • 12.2: Oscillations are caused by the interplay between a restoring force and inertia (3)
    • 12.3: The simplest form of oscillation occurs when the restoring force obeys Hooke's law (4)
    • 12.4: Mechanical energy is conserved in simple harmonic motion (4)
    • 12.5: The motion of a pendulum is approximately simple harmonic (8)
    • 12.6: A physical pendulum has its mass distributed over its volume (4)
    • 12.7: When damping is present, the amplitude of an oscillating system decreases over time (2)
    • 12.8: Forcing a system to oscillate at the right frequency can cause resonance (3)
    • 12: General Problems (21)
    • 12: Extra Problems (14)
    • 12: WebAssign Tutorials (6)

  • Chapter 13: Waves
    • 13: Conceptual Questions (20)
    • 13: Multiple-Choice Problems (10)
    • 13: Estimation/Numerical Analysis (9)
    • 13.1: Waves are disturbances that travel from place to place
    • 13.2: Mechanical waves can be transverse, longitudinal, or a combination of these
    • 13.3: Sinusoidal waves are related to simple harmonic motion (10)
    • 13.4: The propagation speed of a wave depends on the properties of the wave medium (8)
    • 13.5: When two waves are present simultaneously, the total disturbance is the sum of the individual waves (4)
    • 13.6: A standing wave is caused by interference between waves traveling in opposite directions (8)
    • 13.7: Wind instruments, the human voice, and the human ear use standing sound waves (8)
    • 13.8: Two sound waves of slightly different frequencies produce beats (5)
    • 13.9: The intensity of a wave equals the power that it delivers per square meter (9)
    • 13.10: The frequency of a sound depends on the motion of the source and the listener (6)
    • 13: General Problems (18)
    • 13: Extra Problems (10)
    • 13: WebAssign Tutorials (7)

  • Chapter 14: Thermodynamics I
    • 14: Conceptual Questions (25)
    • 14: Multiple-Choice Problems (10)
    • 14: Estimation/Numerical Analysis (15)
    • 14.1: A knowledge of thermodynamics is essential for understanding almost everything around you—including your own body
    • 14.2: Temperature is a measure of the energy within a substance (8)
    • 14.3: In a gas, the relationship between temperature and molecular kinetic energy is a simple one (9)
    • 14.4: Most substances expand when the temperature increases (10)
    • 14.5: Heat is energy that flows due to a temperature difference (12)
    • 14.6: Energy must enter or leave an object in order for it to change phase (8)
    • 14.7: Heat can be transferred by radiation, convection, or conduction (6)
    • 14: General Problems (27)
    • 14: Extra Problems (7)
    • 14: WebAssign Tutorials (8)

  • Chapter 15: Thermodynamics II
    • 15: Conceptual Questions (20)
    • 15: Multiple-Choice Problems (10)
    • 15: Estimation/Numerical Analysis (9)
    • 15.1: The laws of thermodynamics involve energy and entropy
    • 15.2: The first law of thermodynamics relates heat flow, work done, and internal energy change (2)
    • 15.3: A graph of pressure versus volume helps to describe what happens in a thermodynamic process (12)
    • 15.4: More heat is required to change the temperature of a gas isobarically than isochorically (9)
    • 15.5: The second law of thermodynamics describes why some processes are impossible (9)
    • 15.6: The entropy of a system is a measure of its disorder (10)
    • 15: General Problems (23)
    • 15: Extra Problems (9)
    • 15: WebAssign Tutorials (6)

  • Chapter 16: Electrostatics I: Electric Charge, Forces, and Fields
    • 16: Conceptual Questions (17)
    • 16: Multiple-Choice Problems (9)
    • 16: Estimation/Numerical Analysis (7)
    • 16.1: Electric forces and electric charges are all around you—and within you
    • 16.2: Matter contains positive and negative electric charge (6)
    • 16.3: Charge can flow freely in a conductor, but not in an insulator (3)
    • 16.4: Coulomb's law describes the force between charged objects (9)
    • 16.5: The concept of electric field helps us visualize how charges exert forces at a distance (7)
    • 16.6: Gauss's law gives us more insight into the electric field (5)
    • 16.7: In certain situations Gauss's law helps us to calculate the electric field and to determine how charge is distributed (4)
    • 16: General Problems (14)
    • 16: Extra Problems
    • 16: WebAssign Tutorials (5)

  • Chapter 17: Electrostatics II: Electric Potential Energy and Electric Potential
    • 17: Conceptual Questions (20)
    • 17: Multiple-Choice Problems (10)
    • 17: Estimation/Numerical Analysis (3)
    • 17.1: Electric energy is important in nature, technology, and biological systems
    • 17.2: Electric potential energy changes when a charge moves in an electric field (3)
    • 17.3: Electric potential equals electric potential energy per charge (10)
    • 17.4: The electric potential has the same value everywhere on an equipotential surface (2)
    • 17.5: A capacitor stores equal amounts of positive and negative charge (6)
    • 17.6: A capacitor is a storehouse of electric potential energy (6)
    • 17.7: Capacitors can be combined in series or in parallel (10)
    • 17.8: Placing a dielectric between the plates of a capacitor increases the capacitance (6)
    • 17: General Problems (20)
    • 17: Extra Problems
    • 17: WebAssign Tutorials (6)

  • Chapter 18: Electric Charges in Motion
    • 18: Conceptual Questions (13)
    • 18: Multiple-Choice Problems (10)
    • 18: Estimation/Numerical Analysis (7)
    • 18.1: Life on Earth and our technological society are only possible because of charges in motion
    • 18.2: Electric current equals the rate at which charge flows (6)
    • 18.3: The resistance to current flow through an object depends on the object's resistivity and dimensions (5)
    • 18.4: Resistance is important in both technology and physiology (7)
    • 18.5: Kirchhoff's rules help us to analyze simple electric circuits (14)
    • 18.6: The rate at which energy is produced or taken in by a circuit element depends on current and voltage (8)
    • 18.7: A circuit containing a resistor and capacitor has a current that varies with time (5)
    • 18: General Problems (15)
    • 18: Extra Problems
    • 18: WebAssign Tutorials (12)

  • Chapter 19: Magnetism
    • 19: Conceptual Questions (11)
    • 19: Multiple-Choice Problems (10)
    • 19: Estimation/Numerical Analysis (6)
    • 19.1: Magnetic forces are interactions between two magnets
    • 19.2: Magnetism is an interaction between moving charges
    • 19.3: A moving point charge can experience a magnetic force (9)
    • 19.4: A mass spectrometer uses magnetic forces to differentiate atoms of different masses (3)
    • 19.5: Magnetic fields exert forces on current-carrying wires (6)
    • 19.6: A magnetic field can exert a torque on a current loop (2)
    • 19.7: Ampère's law describes the magnetic field created by current-carrying wires (9)
    • 19.8: Two current-carrying wires exert magnetic forces on each other (3)
    • 19: General Problems (22)
    • 19: Extra Problems
    • 19: WebAssign Tutorials (6)

  • Chapter 20: Electromagnetic Induction
    • 20: Conceptual Questions (6)
    • 20: Multiple-Choice Problems (6)
    • 20: Estimation/Numerical Analysis (5)
    • 20.1: The world runs on electromagnetic induction
    • 20.2: A changing magnetic flux creates an electric field (3)
    • 20.3: Lenz's law describes the direction of the induced emf (5)
    • 20.4: Faraday's law explains how alternating currents are generated (4)
    • 20: General Problems (6)
    • 20: Extra Problems
    • 20: WebAssign Tutorials (5)

  • Chapter 21: Alternating-Current Circuits
    • 21: Conceptual Questions (16)
    • 21: Multiple-Choice Problems (8)
    • 21: Estimation/Numerical Analysis (2)
    • 21.1: Most circuits use alternating current
    • 21.2: We need to analyze ac circuits differently than dc circuits (8)
    • 21.3: Transformers allow us to change the voltage of an ac power source (8)
    • 21.4: An inductor is a circuit element that opposes changes in current (4)
    • 21.5: In a circuit with an inductor and capacitor, charge and current oscillate (6)
    • 21.6: When an ac voltage source is attached in series to an inductor, resistor, and capacitor, the circuit can display resonance (17)
    • 21.7: Diodes are important parts of many common circuits
    • 21: General Problems (10)
    • 21: Extra Problems
    • 21: WebAssign Tutorials (3)

  • Chapter 22: Electromagnetic Waves
    • 22: Conceptual Questions (8)
    • 22: Multiple-Choice Problems (7)
    • 22: Estimation/Numerical Analysis (6)
    • 22.1: Light is just one example of an electromagnetic wave
    • 22.2: In an electromagnetic plane wave, electric and magnetic fields both oscillate (13)
    • 22.3: Maxwell's equations explain why electromagnetic waves are possible (3)
    • 22.4: Electromagnetic waves carry both electric and magnetic energy, and come in packets called photons (2)
    • 22: General Problems (4)
    • 22: Extra Problems
    • 22: WebAssign Tutorials (4)

  • Chapter 23: Wave Properties of Light
    • 23: Conceptual Questions (14)
    • 23: Multiple-Choice Problems (9)
    • 23: Estimation/Numerical Analysis (6)
    • 23.1: The wave nature of light explains much about how light behaves
    • 23.2: Huygens' principle explains the reflection and refraction of light (7)
    • 23.3: In some cases light undergoes total internal reflection at the boundary between media (7)
    • 23.4: The dispersion of light explains the colors from a prism or a rainbow (4)
    • 23.5: In a polarized light wave, the electric field vector points in a specific direction (8)
    • 23.6: Light waves reflected from the layers of a thin film can interfere with each other, producing dazzling effects (8)
    • 23.7: Diffraction is the spreading of light when it passes through a narrow opening (7)
    • 23.8: The diffraction of light through a circular aperture is important in optics (6)
    • 23: General Problems (26)
    • 23: Extra Problems
    • 23: WebAssign Tutorials (9)

  • Chapter 24: Geometrical Optics
    • 24: Conceptual Questions (12)
    • 24: Multiple-Choice Problems (9)
    • 24: Estimation/Numerical Analysis (6)
    • 24.1: Mirrors or lenses can be used to form images
    • 24.2: A plane mirror produces an image that is reversed back to front (8)
    • 24.3: A concave mirror can produce an image of a different size than the object (3)
    • 24.4: Simple equations give the position and magnification of the image made by a concave mirror (5)
    • 24.5: A convex mirror always produces an image that is smaller than the object (4)
    • 24.6: The same equations used for concave mirrors also work for convex mirrors (8)
    • 24.7: Convex lenses form images like concave mirrors and vice versa (5)
    • 24.8: The focal length of a lens is determined by its index of refraction and the curvature of its surfaces (4)
    • 24: General Problems (19)
    • 24: Extra Problems
    • 24: WebAssign Tutorials (6)

  • Chapter 25: Relativity
    • 25: Conceptual Questions (11)
    • 25: Multiple-Choice Problems (6)
    • 25: Estimation/Numerical Analysis (8)
    • 25.1: The concepts of relativity may seem exotic, but they're part of everyday life
    • 25.2: Newton's mechanics include some ideas of relativity (9)
    • 25.3: The Michelson-Morley experiment shows that light does not obey Newtonian relativity (3)
    • 25.4: Einstein's relativity predicts that the time between events depends on the observer (9)
    • 25.5: Einstein's relativity also predicts that the length of an object depends on the observer (5)
    • 25.6: The relative velocity of two objects is constrained by the speed of light, the ultimate speed limit (6)
    • 25.7: The equations for momentum and kinetic energy must be modified at very high speeds (6)
    • 25.8: Einstein's general theory of relativity describes the fundamental nature of gravity (2)
    • 25: General Problems (20)
    • 25: Extra Problems
    • 25: WebAssign Tutorials

  • Chapter 26: Quantum Physics and Atomic Structure
    • 26: Conceptual Questions (17)
    • 26: Multiple-Choice Problems (9)
    • 26: Estimation/Numerical Analysis (7)
    • 26.1: Experiments that probe the nature of light and matter reveal the limits of classical physics
    • 26.2: The photoelectric effect and blackbody radiation show that light is absorbed and emitted in the form of photons (16)
    • 26.3: As a result of its photon character, light changes wavelength when it is scattered (10)
    • 26.4: Matter, like light, has aspects of both waves and particles (9)
    • 26.5: The spectra of light emitted and absorbed by atoms show that atomic energies are quantized (9)
    • 26.6: Models by Bohr and Schrödinger give insight into the intriguing structure of the atom (6)
    • 26: General Problems (8)
    • 26: Extra Problems
    • 26: WebAssign Tutorials (1)

  • Chapter 27: Nuclear Physics
    • 27: Conceptual Questions (16)
    • 27: Multiple-Choice Problems (10)
    • 27: Estimation/Numerical Analysis (9)
    • 27.1: The quantum concepts that help explain atoms are essential for understanding the nucleus
    • 27.2: The strong force holds nuclei together (5)
    • 27.3: The binding energy of nuclei helps explain why some are more stable than others (6)
    • 27.4: The largest nuclei can release energy by undergoing fission and splitting apart (10)
    • 27.5: The smallest nuclei can release energy if they are forced to fuse together (5)
    • 27.6: Unstable nuclei may emit alpha, beta, or gamma radiation (16)
    • 27: General Problems (18)
    • 27: Extra Problems
    • 27: WebAssign Tutorials

  • Chapter 28: Particle Physics
    • 28: Conceptual Questions (8)
    • 28: Multiple-Choice Problems (9)
    • 28: Estimation/Numerical Analysis (1)
    • 28.1: Studying the ultimate constituents of matter helps reveal the nature of the physical universe
    • 28.2: Most forms of matter can be explained by just a handful of fundamental particles (15)
    • 28.3: Four fundamental forces describe all interactions between material objects (2)
    • 28.4: We live in an expanding universe, and the nature of most of its contents is a mystery
    • 28: General Problems (7)
    • 28: Extra Problems (1)
    • 28: WebAssign Tutorials

College Physics brings physics to life for students through a unique approach to the algebra-based introductory course. Innovative visual features break down equations and figures to promote the crucial conceptual understanding students need to be successful, while carefully crafted pedagogical features help students develop problem-solving skills. College Physics also offers a focus on real-life biology applications throughout to illustrate why physics is important to students' future fields of work.

W. H. Freeman and WebAssign have partnered to deliver WebAssign Premium - a comprehensive and flexible suite of resources for your Physics course. Combining the mostly widely used online homework platform with a wealth of visualization and tutorial resources, WebAssign Premium extends and enhances the classroom experience for instructors and students. It includes:

  • eBook - The entire text is available in a user-friendly online format, including all tables, figures, and study aids.
  • Interactive Conceptual Resources - Animations allow students to visualize concepts and manipulate variables to see cause-and-effect relationships within physics scenarios. A bank of question-oriented animations ask students to predict the outcome of a real-life situation, demonstrating a practical application of a concept.
  • Interactive Exercises - Developed by physics education researchers at the University of Illinois, these questions feature in-depth tutorials, which provide step-by-step feedback and a series of subquestions to guide students to the correct answer. Using the tutorials creates a conceptual understanding that can be applied to other problems.
  • P'Casts - These videos replicate the face-to-face experience of watching an instructor work a problem. Using a virtual whiteboard, the P'Cast tutors show students the steps involved in solving key worked examples, while explaining the concepts along the way.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
P - Problem
XP - Extra Problem
WAT - WebAssign Tutorial


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Introduction to Physics
1.P 54 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 019 021 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058
1.WAT 1 001
Chapter 2: Linear Motion
2.P 79 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 077 078 079 080 081
2.WAT 6 001 002 003 004 005 006
Chapter 3: Motion in Two or Three Dimensions
3.P 85 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086
3.WAT 3 001 002 003
3.XP 9 001 002 003 004 005 006 007 008 009
Chapter 4: Forces and Motion I: Newton's Laws
4.P 109 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 108 109 110
4.WAT 5 001 002 003 004 005
4.XP 13 001 002 003 004 005 006 007 008 009 010 011 012 013
Chapter 5: Forces and Motion II: Applications
5.P 90 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 086 087 089 090 091 092
5.WAT 7 001 002 003 004 005 006 007
5.XP 6 001 002 003 004 005 006
Chapter 6: Work and Energy
6.P 96 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 101 102 103 104 105
6.WAT 6 001 002 003 004 005 006
6.XP 9 001 002 003 004 005 006 007 008 009
Chapter 7: Momentum, Collisions, and the Center of Mass
7.P 84 001 002 003 004 005 006 007 008 009 010 011 012 013 014 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 033 034 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 077 078 079 080 081 082 083 084 085 086 090 096
7.WAT 5 001 002 003 004 005
7.XP 12 001 002 003 004 005 006 007 008 009 010 011 012
Chapter 8: Rotational Motion
8.P 125 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 128 129 130 131
8.WAT 9 001 002 003 004 005 006 007 008 009
8.XP 10 001 002 003 004 005 006 007 008 009 010
Chapter 9: Elastic Properties of Matter: Stress and Strain
9.P 80 001 002 003 004 005 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 080 081 082
9.WAT 1 002
9.XP 7 001 002 003 004 005 006 008
Chapter 10: Gravitation
10.P 70 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 062 063 064 065 066 067 068 070 071 072
10.WAT 3 001 002 003
10.XP 11 001 002 003 004 005 006 007 008 009 010 011
Chapter 11: Fluids
11.P 104 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 096 097 098 099 100 101 102 103 104 107
11.WAT 7 001 002 003 004 005 006 007
11.XP 4 001 002 003 004
Chapter 12: Oscillations
12.P 87 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 107
12.WAT 6 001 002 003 004 005 006
12.XP 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
Chapter 13: Waves
13.P 115 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 125 127
13.WAT 7 001 002 003 004 005 006 007
13.XP 10 001 002 003 004 005 006 007 008 009 010
Chapter 14: Thermodynamics I
14.P 130 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 124 125 127 128 131 132 133 134 136
14.WAT 8 001 002 003 004 005 006 007 008
14.XP 7 001 002 003 004 005 006 007
Chapter 15: Thermodynamics II
15.P 104 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 102 103 105 106
15.WAT 6 001 002 003 004 005 006
15.XP 9 001 002 003 004 005 006 007 008 009
Chapter 16: Electrostatics I: Electric Charge, Forces, and Fields
16.P 81 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 069 070 071 072 073 074 075 076 077 079 080 081 082 084 085
16.WAT 5 001 002 003 004 005
Chapter 17: Electrostatics II: Electric Potential Energy and Electric Potential
17.P 96 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 047 049 050 054 055 056 057 058 059 060 061 062 063 064 065 066 067 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 091 092 093 094 095 096 097 098 099 100 101 102 103
17.WAT 6 001 002 003 004 005 006
Chapter 18: Electric Charges in Motion
18.P 90 001 002 003 004 005 006 007 008 009 010 011 012 013 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093
18.WAT 12 001 002 003 004 005 006 007 008 009 010 011 012
Chapter 19: Magnetism
19.P 81 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081
19.WAT 6 001 002 003 004 005 006
Chapter 20: Electromagnetic Induction
20.P 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035
20.WAT 5 001 002 003 004 005
Chapter 21: Alternating-Current Circuits
21.P 79 001 002 003 004 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 074 075 076 077 078 079 080 081 082 083
21.WAT 3 001 002 003
Chapter 22: Electromagnetic Waves
22.P 43 001 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 021 022 023 025 026 027 028 029 030 031 032 033 034 035 036 037 039 040 041 045 046 047 048 049 050
22.WAT 4 001 002 003 004
Chapter 23: Wave Properties of Light
23.P 102 001 002 003 004 005 006 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105
23.WAT 9 001 002 003 004 005 006 007 008 009
Chapter 24: Geometrical Optics
24.P 83 001 002 003 004 005 006 007 008 009 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 039 040 041 042 043 046 047 048 050 051 052 053 054 055 056 057 058 059 060 062 063 064 065 066 067 068 069 072 073 075 076 078 079 080 081 083 084 085 086 087 088 089 090 091 093 094 095 096 097
24.WAT 6 001 002 003 004 005 006
Chapter 25: Relativity
25.P 85 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087
Chapter 26: Quantum Physics and Atomic Structure
26.P 91 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 072 073 075 076 077 078 079 080 081 085 086 087 088 089 090 092 093 094 096 097 098 099 100
26.WAT 1 001
Chapter 27: Nuclear Physics
27.P 95 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 086 087 088 089 090 091 092 093 094 096 097 098
Chapter 28: Particle Physics
28.P 42 001 002 003 004 005 006 007 008 011 012 013 014 015 016 017 018 019 020 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 039 041 044 045 046 047 048 050 051
28.XP 1 001
Total 2674