# University Calculus 1st edition

Joel Hass, Maurice Weir and George Thomas
Publisher: Pearson Education

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term \$27.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter A: Algebra Review
• A.1: The Cartesian Coordinate Plane (52)
• A.2: Linear and Quadratic Functions (36)
• A.3: Polynomial Functions (31)
• A.4: Rational Functions (46)
• A.5: Further Topics in Functions (53)
• A.6: Exponential and Logarithmic Functions (46)
• A.7: Introduction to Conics (17)
• A.8: Systems of Equations and Matrices (24)
• A.9: Sequences and the Binomial Theorem (24)

• Chapter T: Trigonometry Review
• T.1: Foundations of Trigonometry (95)
• T.2: Applications of Trigonometry (5)

• Chapter 1: Functions
• 1.1: Functions and Their Graphs (27)
• 1.2: Combining Functions; Transformations of Functions (15)
• 1.3: Trigonometric Functions (3)
• 1.4: Exponential Functions (1)
• 1.5: Inverse Functions and Logarithms (34)
• 1.6: Graphing with Calculators and Computers (1)

• Chapter 2: Limits and Continuity
• 2.1: Rates of Change and Tangents to Curves (7)
• 2.2: Limit of a Function and Limit Laws (21)
• 2.3: The Precise Definition of a Limit (1)
• 2.4: One-Sided Limits and Limits at Infinity (20)
• 2.5: Infinite Limits and Vertical Asymptotes (21)
• 2.6: Continuity (22)
• 2.7: Tangents and Derivatives at a Point (8)
• 2: Review Questions
• 2: Practice Exercises
• 2: Additional and Advanced Exercises

• Chapter 3: Differentiation
• 3.1: The Derivative as a Function (15)
• 3.2: Differentiation Rules (41)
• 3.3: The Derivative as a Rate of Change (8)
• 3.4: Derivatives of Trigonometric Functions (12)
• 3.5: The Chain Rule and Parametric Equations (33)
• 3.6: Implicit Differentiation (9)
• 3.7: Derivatives of Inverse Functions and Logarithms (28)
• 3.8: Inverse Trigonometric Functions (6)
• 3.9: Related Rates (16)
• 3.10: Linearization and Differentials (17)
• 3.11: Hyperbolic Functions
• 3: Review Questions
• 3: Practice Exercises
• 3: Additional and Advanced Exercises

• Chapter 4: Applications of Derivatives
• 4.1: Extreme Values of Functions (7)
• 4.2: The Mean Value Theorem (20)
• 4.3: The First Derivative Test (8)
• 4.4: Concavity and Curve Sketching (24)
• 4.5: Optimization (25)
• 4.6: Indeterminate Forms and L'Hopital's Rule (33)
• 4.7: Newton's Method (15)
• 4.8: Antiderivatives (26)
• 4: Review Questions
• 4: Practice Exercises
• 4: Additional and Advanced Exercises

• Chapter 5: Integration
• 5.1: Introduction to Areas (13)
• 5.2: Sigma Notation and Limits of Finite Sums (3)
• 5.3: The Definite Integral (27)
• 5.4: The Fundamental Theorem of Calculus (15)
• 5.5: Indefinite Integrals and the Substitution Rule (11)
• 5.6: Substitution and Area Between Curves (51)
• 5.7: The Logarithm Defined as an Integral
• 5: Review Questions
• 5: Practice Exercises
• 5: Additional and Advanced Exercises

• Chapter 6: Applications of Definite Integrals
• 6.1: Volumes by Cross-Sections (20)
• 6.2: Volumes by Cylindrical Shells (20)
• 6.3: Arc Length (21)
• 6.4: Areas of Surfaces of Revolution (15)
• 6.5: Exponential Rates of Change and Separable Differential Equations (5)
• 6.6: Work (21)
• 6.7: Moments and Centers of Mass (3)
• 6: Review Questions
• 6: Practice Exercises
• 6: Additional and Advanced Exercises

• Chapter 7: Techniques of Integration
• 7.1: Integration by Parts (23)
• 7.2: Trigonometric Integrals (26)
• 7.3: Trigonometric Substitutions (17)
• 7.4: Integration of Rational Functions by Partial Fractions (26)
• 7.5: Integral Tables and Computer Algebra Systems (15)
• 7.6: Numerical Integration (9)
• 7.7: Improper Integrals (13)
• 7: Review Questions
• 7: Practice Exercises
• 7: Additional and Advanced Exercises

• Chapter 8: Infinite Sequences and Series
• 8.1: Sequences (26)
• 8.2: Infinite Series (14)
• 8.3: The Integral Test (17)
• 8.4: Comparison Tests (28)
• 8.5: The Ratio and Root Tests (12)
• 8.6: Alternating Series, Absolute and Conditional Convergence (32)
• 8.7: Power Series (22)
• 8.8: Taylor and Maclaurin Series (26)
• 8.9: Convergence of Taylor Series (9)
• 8.10: The Binomial Series
• 8: Review Questions
• 8: Practice Exercises
• 8: Additional and Advanced Exercises

• Chapter 9: Polar Coordinates and Conics
• 9.1: Polar Coordinates (19)
• 9.2: Graphing in Polar Coordinates (5)
• 9.3: Calculus in Polar Coordinates (13)
• 9.4: Conic Sections (12)
• 9.5: Conics in Polar Coordinates (6)
• 9.6: Conics and Parametric Equations (16)
• 9: Review Questions
• 9: Practice Exercises
• 9: Additional and Advanced Exercises

• Chapter 10: Vectors and the Geometry of Space
• 10.1: Three-Dimensional Coordinate Systems (2)
• 10.2: Vectors (2)
• 10.3: The Dot Product (3)
• 10.4: The Cross Product (1)
• 10.5: Lines and Planes in Space
• 10.6: Cylinders and Quadric Surfaces (2)

• Chapter 11: Vector-Valued Functions and Motion in Space
• 11.1: Vector Functions and Their Derivatives
• 11.2: Integrals of Vector Functions
• 11.3: Arc Length in Space
• 11.4: Curvature of a Curve
• 11.5: Tangential and Normal Components of Acceleration
• 11.6: Velocity and Acceleration in Polar Coordinates

• Chapter 12: Partial Derivatives
• 12.1: Functions of Several Variables
• 12.2: Limits and Continuity in Higher Dimensions
• 12.3: Partial Derivatives
• 12.4: The Chain Rule
• 12.5: Directional Derivatives and Gradient Vectors
• 12.6: Tangent Planes and Differentials
• 12.7: Extreme Values and Saddle Points
• 12.8: Lagrange Multipliers
• 12.9: Taylor's Formula for Two Variables

• Chapter 13: Multiple Integrals
• 13.1: Double and Iterated Integrals over Rectangles
• 13.2: Double Integrals over General Regions
• 13.3: Area by Double
• 13.4: Double Integrals in Polar Form
• 13.5: Triple Integrals in Rectangular Coordinates
• 13.6: Moments and Centers of Mass
• 13.7: Triple Integrals in Cylindrical and Spherical Coordinates
• 13.8: Substitutions in Multiple Integrals

• Chapter 14: Integration in Vector Fields
• 14.1: Line Integrals
• 14.2: Vector Fields, Work, Circulation, and Flux
• 14.3: Path Independence, Potential Functions, and Conservative Fields
• 14.4: Green's Theorem
• 14.5: Surfaces and Area
• 14.6: Surface Integrals and Flux
• 14.7: Stokes' Theorem
• 14.8: The Divergence Theorem

• Chapter 15: First-Order Differential Equations (Online)
• 15.1: Introduction to Differential Equations: Solutions, Direction Fields, and Euler's Method
• 15.2: First-Order Linear Equations
• 15.3: Applications
• 15.4: Euler's Method
• 15.5: Autonomous Equations
• 15.6: Systems of Equations and Phase Planes

• Chapter 16: Second-Order Differential Equations (Online)
• 16.1: Second-Order Linear Equations
• 16.2: Nonhomogeneous Linear Equations
• 16.3: Applications
• 16.4: Euler Equations
• 16.5: Power Series Solutions

The WebAssign questions for this textbook are from an independent collection of questions developed by a team of experienced mathematics instructors. These class-tested and peer-reviewed questions, covering the main topics in calculus, have been correlated as closely as possible to the appropriate chapters in this textbook.

Question Collection Features:

• Complete question coverage of all calculus concepts
• Detailed worked-out solutions
• Interactive Tutorials
• Complete coverage of precalculus concepts

##### Question Group Key
Tutorial - Pop-up Tutorial
Tutorial.SA - Stand-alone Tutorial

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter A: Algebra Review
A.1 52 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP
A.2 36 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP
A.3 31 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP
A.4 46 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
A.5 53 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP
A.6 46 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
A.7 17 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP
A.8 24 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
A.9 24 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
Chapter T: Trigonometry Review
T.1 95 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP 554.XP 555.XP 556.XP 557.XP 558.XP 559.XP 560.XP 561.XP 562.XP 563.XP 564.XP 565.XP 566.XP 567.XP 568.XP 569.XP 570.XP 571.XP 572.XP 573.XP 574.XP 575.XP 576.XP 577.XP 578.XP 579.XP 580.XP 581.XP 582.XP 583.XP 584.XP 585.XP 586.XP 587.XP 588.XP 589.XP 590.XP 591.XP 592.XP 593.XP 594.XP 595.XP
T.2 5 501.XP 502.XP 503.XP 504.XP 505.XP
Chapter 1: Functions
1.1 27 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP.Tutorial 527.XP.Tutorial
1.2 15 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
1.3 3 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial
1.4 1 501.XP.Tutorial
1.5 34 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP.Tutorial 531.XP.Tutorial 532.XP.Tutorial 533.XP.Tutorial 534.XP.Tutorial
1.6 1 501.XP.Tutorial
Chapter 2: Limits and Continuity
2.1 7 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial
2.2 21 501.XP.Tutorial 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP.Tutorial 516.XP.Tutorial 517.XP.Tutorial 518.XP.Tutorial 519.XP.Tutorial 520.XP.Tutorial 521.XP.Tutorial
2.3 1 501.XP
2.4 20 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP.Tutorial
2.5 21 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial
2.6 22 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP.Tutorial 520.XP.Tutorial 521.XP.Tutorial 522.XP.Tutorial
2.7 8 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP
Chapter 3: Differentiation
3.1 15 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP 515.XP.Tutorial
3.2 41 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP 527.XP 528.XP 529.XP 530.XP.Tutorial 531.XP 532.XP.Tutorial 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP.Tutorial 539.XP.Tutorial 540.XP.Tutorial 541.XP.Tutorial
3.3 8 501.XP 502.XP.Tutorial 503.XP 504.XP.Tutorial 505.XP 506.XP.Tutorial 507.XP.Tutorial 508.XP.Tutorial
3.4 12 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial
3.5 33 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP.Tutorial 531.XP.Tutorial 532.XP.Tutorial 533.XP.Tutorial
3.6 9 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial
3.7 28 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP.Tutorial 523.XP 524.XP 525.XP.Tutorial 526.XP 527.XP 528.XP.Tutorial
3.8 6 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP
3.9 16 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP
3.10 17 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial
Chapter 4: Applications of Derivatives
4.1 7 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial
4.2 20 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP 519.XP 520.XP
4.3 8 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP.Tutorial
4.4 24 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP.Tutorial 524.XP.Tutorial
4.5 25 501.XP.Tutorial 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP.Tutorial 525.XP.Tutorial
4.6 33 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP.Tutorial 533.XP.Tutorial
4.7 15 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
4.8 26 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP.Tutorial 521.XP.Tutorial 522.XP 523.XP 524.XP.Tutorial 525.XP.Tutorial 526.XP.Tutorial
Chapter 5: Integration
5.1 13 501.XP 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial
5.2 3 501.XP 502.XP 503.XP.Tutorial
5.3 27 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial 527.XP.Tutorial
5.4 15 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP.Tutorial 514.XP.Tutorial 515.XP.Tutorial
5.5 11 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP.Tutorial 509.XP.Tutorial 510.XP.Tutorial 511.XP.Tutorial
5.6 51 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP.Tutorial 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP.Tutorial 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP.Tutorial 549.XP.Tutorial 550.XP.Tutorial 551.XP.Tutorial
Chapter 6: Applications of Definite Integrals
6.1 20 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP.Tutorial 520.XP.Tutorial
6.2 20 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial 518.XP.Tutorial 519.XP.Tutorial 520.XP.Tutorial
6.3 21 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP.Tutorial 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP.Tutorial 520.XP 521.XP.Tutorial
6.4 15 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
6.5 5 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial
6.6 21 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial 518.XP.Tutorial 519.XP.Tutorial 520.XP.Tutorial 521.XP.Tutorial
6.7 3 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial
Chapter 7: Techniques of Integration
7.1 23 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP.Tutorial 523.XP.Tutorial
7.2 26 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP.Tutorial 523.XP.Tutorial 524.XP.Tutorial 525.XP.Tutorial 526.XP.Tutorial
7.3 17 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial
7.4 26 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial
7.5 15 501.XP 502.XP.Tutorial 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP
7.6 9 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP.Tutorial
7.7 13 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP.Tutorial
Chapter 8: Infinite Sequences and Series
8.1 26 501.XP 503.XP 504.XP.Tutorial 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP.Tutorial 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP.Tutorial 527.XP.Tutorial
8.2 14 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP.Tutorial
8.3 17 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial
8.4 28 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP.Tutorial
8.5 12 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP.Tutorial 512.XP.Tutorial
8.6 32 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP.Tutorial 523.XP 524.XP 525.XP 526.XP.Tutorial 527.XP 528.XP 529.XP 530.XP.Tutorial 531.XP.Tutorial 532.XP.Tutorial
8.7 22 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP.Tutorial
8.8 26 501.XP.Tutorial 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP.Tutorial 525.XP.Tutorial 526.XP.Tutorial
8.9 9 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial
Chapter 9: Polar Coordinates and Conics
9.1 19 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP
9.2 5 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP
9.3 13 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP
9.4 12 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
9.5 6 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP
9.6 16 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP.Tutorial 515.XP 516.XP
Chapter 10: Vectors and the Geometry of Space
10.1 2 501.XP.Tutorial 502.XP.Tutorial
10.2 2 501.XP.Tutorial 502.XP.Tutorial
10.3 3 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial
10.4 1 501.XP.Tutorial
10.6 2 501.XP.Tutorial 502.XP.Tutorial
Total 1574