University Calculus: Early Transcendentals 2nd edition

Textbook Cover

Joel Hass, Maurice D. Weir, and George B. Thomas, Jr.
Publisher: Pearson Education


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term N/A
High School N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter A: Algebra Review
    • A.1: The Cartesian Coordinate Plane
    • A.2: Linear and Quadratic Functions
    • A.3: Polynomial Functions
    • A.4: Rational Functions
    • A.5: Further Topics in Functions
    • A.6: Exponential and Logarithmic Functions
    • A.7: Introduction to Conics
    • A.8: Systems of Equations and Matrices
    • A.9: Sequences and the Binomial Theorem

  • Chapter T: Trigonometry Review
    • T.1: Foundations of Trigonometry (95)
    • T.2: Applications of Trigonometry (5)

  • Chapter 1: Functions
    • 1.1: Functions and Their Graphs (17)
    • 1.2: Combining Functions; Shifting and Scaling Graphs (21)
    • 1.3: Trigonometric Functions (3)
    • 1.4: Graphing with Calculators and Computers (1)
    • 1.5: Exponential Functions (10)
    • 1.6: Inverse Functions and Logarithms (30)

  • Chapter 2: Limits and Continuity
    • 2.1: Rates of Change and Tangents to Curves (7)
    • 2.2: Limit of a Function and Limit Laws (16)
    • 2.3: The Precise Definition of a Limit (1)
    • 2.4: One-Sided Limits (9)
    • 2.5: Continuity (19)
    • 2.6: Limits Involving Infinity; Asymptotes of Graphs (27)

  • Chapter 3: Differentiation
    • 3.1: Tangents and the Derivative at a Point (11)
    • 3.2: The Derivative as a Function (7)
    • 3.3: Differentiation Rules (44)
    • 3.4: The Derivative as a Rate of Change (11)
    • 3.5: Derivatives of Trigonometric Functions (19)
    • 3.6: The Chain Rule (20)
    • 3.7: Implicit Differentiation (11)
    • 3.8: Derivatives of Inverse Functions and Logarithms (26)
    • 3.9: Inverse Trigonometric Functions (4)
    • 3.10: Related Rates (19)
    • 3.11: Linearization and Differentials (17)

  • Chapter 4: Applications of Derivatives
    • 4.1: Extreme Values of Functions (11)
    • 4.2: The Mean Value Theorem (21)
    • 4.3: The First Derivative Test and Monotonicity (9)
    • 4.4: Concavity and Curve Sketching (42)
    • 4.5: Indeterminate Forms and L'Hôpital's Rule (51)
    • 4.6: Optimization (2)
    • 4.7: Newton's Method (15)
    • 4.8: Antiderivatives (32)

  • Chapter 5: Integration
    • 5.1: Area and Estimating with Finite Sums (13)
    • 5.2: Sigma Notation and Limits of Finite Sums (11)
    • 5.3: The Definite Integral (35)
    • 5.4: The Fundamental Theorem of Calculus (40)
    • 5.5: Indefinite Integrals and the Substitution Rule (12)
    • 5.6: Substitution and Area Between Curves (41)

  • Chapter 6: Applications of Definite Integrals
    • 6.1: Volumes Using Cross-Sections (20)
    • 6.2: Volumes Using Cylindrical Shells (19)
    • 6.3: Arc Length (16)
    • 6.4: Areas of Surfaces of Revolution (15)
    • 6.5: Work (17)
    • 6.6: Moments and Centers of Mass (8)

  • Chapter 7: Integrals and Transcendental Functions
    • 7.1: The Logarithm Defined as an Integral
    • 7.2: Exponential Rates of Change and Separable Differential Equations (5)
    • 7.3: Hyperbolic Functions (2)

  • Chapter 8: Techniques of Integration
    • 8.1: Integration by Parts (26)
    • 8.2: Trigonometric Integrals (26)
    • 8.3: Trigonometric Substitutions (18)
    • 8.4: Integration of Rational Functions by Partial Fractions (29)
    • 8.5: Integral Tables and Computer Algebra Systems (17)
    • 8.6: Numerical Integration (12)
    • 8.7: Improper Integrals (12)

  • Chapter 9: Infinite Sequences and Series
    • 9.1: Sequences (30)
    • 9.2: Infinite Series (11)
    • 9.3: The Integral Test (17)
    • 9.4: Comparison Tests (28)
    • 9.5: The Ratio and Root Tests (10)
    • 9.6: Alternating Series, Absolute and Conditional Convergence (31)
    • 9.7: Power Series (22)
    • 9.8: Taylor and Maclaurin Series (25)
    • 9.9: Convergence of Taylor Series (5)
    • 9.10: The Binomial Series and Applications of Taylor Series

  • Chapter 10: Parametric Equations and Polar Coordinates
    • 10.1: Parametrizations of Plane Curves (14)
    • 10.2: Calculus with Parametric Curves (24)
    • 10.3: Polar Coordinates (19)
    • 10.4: Graphing in Polar Coordinates (4)
    • 10.5: Calculus in Polar Coordinates (13)
    • 10.6: Conics in Polar Coordinates (6)

  • Chapter 11: Vectors and the Geometry of Space
    • 11.1: Three-Dimensional Coordinate Systems (2)
    • 11.2: Vectors (1)
    • 11.3: The Dot Product (1)
    • 11.4: The Cross Product
    • 11.5: Lines and Planes in Space
    • 11.6: Cylinders and Quadric Surfaces

  • Chapter 12: Vector-Valued Functions and Motion in Space
    • 12.1: Curves in Space and Their Tangents
    • 12.2: Integrals of Vector Functions; Projectile Motion
    • 12.3: Arc Length in Space
    • 12.4: Curvature and Normal Vectors of a Curve
    • 12.5: Tangential and Normal Components of Acceleration
    • 12.6: Velocity and Acceleration in Polar Coordinates

  • Chapter 13: Partial Derivatives
    • 13.1: Functions of Several Variables
    • 13.2: Limits and Continuity in Higher Dimensions
    • 13.3: Partial Derivatives
    • 13.4: The Chain Rule
    • 13.5: Directional Derivatives and Gradient Vectors
    • 13.6: Tangent Planes and Differentials
    • 13.7: Extrema of Multivariable Functions
    • 13.8: Lagrange Multipliers

  • Chapter 14: Multiple Integrals
    • 14.1: Double and Iterated Integrals over Rectangles
    • 14.2: Double Integrals over General Regions
    • 14.3: Area by Double Integration
    • 14.4: Double Integrals in Polar Form
    • 14.5: Triple Integrals in Rectangular Coordinates
    • 14.6: Moments and Centers of Mass
    • 14.7: Triple Integrals in Cylindrical and Spherical Coordinates
    • 14.8: Substitutions in Multiple Integrals

  • Chapter 15: Integration in Vector Fields
    • 15.1: Line Integrals
    • 15.2: Vector Fields and Line Integrals: Work, Circulation, and Flux
    • 15.3: Path Independence, Conservative Fields, and Potential Functions
    • 15.4: Green's Theorem
    • 15.5: Surfaces and Area
    • 15.6: Surface Integrals
    • 15.7: Stokes' Theorem
    • 15.8: The Divergence Theorem

  • Chapter 16: First-Order Differential Equations (Online)
    • 16.1: Introduction to Differential Equations: Solutions, Direction Fields, and Euler's Method
    • 16.2: First-Order Linear Equations
    • 16.3: Applications of First-Order Differential Equations
    • 16.4: Autonomous Equations
    • 16.5: Systems of Equations and Phase Planes

  • Chapter 17: Second-Order Differential Equations (Online)
    • 17.1: Second-Order Linear Equations
    • 17.2: Nonhomogeneous Linear Equations
    • 17.3: Applications of Second-Order Differential Equations
    • 17.4: Euler Equations
    • 17.5: Power Series Solutions

  • Chapter A: Appendices
    • A.1: Real Numbers and the Real Line (52)
    • A.2: Mathematical Induction (38)
    • A.3: Lines, Circles, and Parabolas (31)
    • A.4: Conic Sections (46)
    • A.5: Proofs of Limit Theorems (53)
    • A.6: Common Limits (46)
    • A.7: Theory of the Real Numbers (17)
    • A.8: Complex Numbers (24)
    • A.9: The Distributive Law for Vector Cross Products (24)
    • A.10: The Mixed Derivative Theorem and the Increment Theorem
    • A.11: Taylor's Formula for Two Variables

The WebAssign questions for this textbook are from an independent collection of questions developed by a team of experienced mathematics instructors. These class-tested and peer-reviewed questions, covering the main topics in calculus, have been correlated as closely as possible to the appropriate chapters in this textbook.

Question Collection Features:

  • Complete question coverage of all calculus concepts
  • Detailed worked-out solutions
  • Interactive Tutorials
  • Complete coverage of precalculus concepts

Question Group Key
Tutorial - Pop-up Tutorial
Tutorial.SA - Stand-alone Tutorial


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter A: Appendices
A.1 52 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP
A.2 38 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP.Tutorial 538.XP.Tutorial
A.3 31 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP
A.4 46 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
A.5 53 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP
A.6 46 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
A.7 17 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP
A.8 24 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
A.9 24 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
Chapter T: Trigonometry Review
T.1 95 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP 554.XP 555.XP 556.XP 557.XP 558.XP 559.XP 560.XP 561.XP 562.XP 563.XP 564.XP 565.XP 566.XP 567.XP 568.XP 569.XP 570.XP 571.XP 572.XP 573.XP 574.XP 575.XP 576.XP 577.XP 578.XP 579.XP 580.XP 581.XP 582.XP 583.XP 584.XP 585.XP 586.XP 587.XP 588.XP 589.XP 590.XP 591.XP 592.XP 593.XP 594.XP 595.XP
T.2 5 501.XP 502.XP 503.XP 504.XP 505.XP
Chapter 1: Functions
1.1 17 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial
1.2 21 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial
1.3 3 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial
1.4 1 501.XP.Tutorial
1.5 10 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP.Tutorial 508.XP.Tutorial 509.XP.Tutorial 510.XP.Tutorial
1.6 30 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP.Tutorial
Chapter 2: Limits and Continuity
2.1 7 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial
2.2 16 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial 514.XP.Tutorial 515.XP.Tutorial 516.XP.Tutorial
2.3 1 501.XP
2.4 9 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial
2.5 19 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP.Tutorial 519.XP
2.6 27 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP.Tutorial 519.XP 520.XP.Tutorial 521.XP 522.XP 523.XP.Tutorial 524.XP.Tutorial 525.XP.Tutorial 526.XP.Tutorial 527.XP.Tutorial
Chapter 3: Differentiation
3.1 11 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP.Tutorial 511.XP.Tutorial
3.2 7 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial
3.3 44 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP.Tutorial 520.XP 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP.Tutorial 532.XP 533.XP 534.XP 535.XP 536.XP.Tutorial 537.XP 538.XP.Tutorial 539.XP 540.XP 541.XP 542.XP 543.XP.Tutorial 544.XP.Tutorial
3.4 11 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial
3.5 19 501.XP.Tutorial 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP.Tutorial 519.XP.Tutorial
3.6 20 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP.Tutorial
3.7 11 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial
3.8 26 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP.Tutorial 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP
3.9 4 501.XP.Tutorial 502.XP.Tutorial 503.XP 504.XP
3.10 19 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP.Tutorial 519.XP
3.11 17 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP
Chapter 4: Applications of Derivatives
4.1 11 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP.Tutorial 509.XP.Tutorial 510.XP.Tutorial 511.XP.Tutorial
4.2 21 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP
4.3 9 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP.Tutorial 509.XP
4.4 42 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP.Tutorial 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP.Tutorial 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP.Tutorial 542.XP.Tutorial
4.5 51 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP.Tutorial 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP.Tutorial 537.XP 538.XP 539.XP 540.XP.Tutorial 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP.Tutorial 548.XP 549.XP 550.XP.Tutorial 551.XP.Tutorial
4.6 2 501.XP.Tutorial 502.XP.Tutorial
4.7 15 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
4.8 32 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP.Tutorial 527.XP.Tutorial 528.XP 529.XP 530.XP.Tutorial 531.XP.Tutorial 532.XP.Tutorial
Chapter 5: Integration
5.1 13 501.XP 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial
5.2 11 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial
5.3 35 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP.Tutorial 528.XP 529.XP 530.XP 531.XP.Tutorial 532.XP 533.XP 534.XP 535.XP.Tutorial
5.4 40 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP.Tutorial 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP.Tutorial 538.XP.Tutorial 539.XP.Tutorial 540.XP.Tutorial
5.5 12 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP.Tutorial 511.XP.Tutorial 512.XP.Tutorial
5.6 41 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP.Tutorial 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP.Tutorial 539.XP.Tutorial 540.XP.Tutorial 541.XP.Tutorial
Chapter 6: Applications of Definite Integrals
6.1 20 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP.Tutorial 520.XP.Tutorial
6.2 19 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP.Tutorial 517.XP.Tutorial 518.XP.Tutorial 519.XP.Tutorial
6.3 16 501.XP 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP.Tutorial
6.4 15 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
6.5 17 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP.Tutorial 515.XP.Tutorial 516.XP.Tutorial 517.XP.Tutorial
6.6 8 501.XP.Tutorial 502.XP.Tutorial 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial 508.XP.Tutorial
Chapter 7: Integrals and Transcendental Functions
7.2 5 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial
7.3 2 501.XP.Tutorial 502.XP.Tutorial
Chapter 8: Techniques of Integration
8.1 26 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP.Tutorial 524.XP.Tutorial 525.XP.Tutorial 526.XP.Tutorial
8.2 26 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP.Tutorial 523.XP.Tutorial 524.XP.Tutorial 525.XP.Tutorial 526.XP.Tutorial
8.3 18 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial 518.XP.Tutorial
8.4 29 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial 527.XP.Tutorial 528.XP.Tutorial 529.XP.Tutorial
8.5 17 501.XP 502.XP.Tutorial 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial
8.6 12 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP.Tutorial 510.XP.Tutorial 511.XP.Tutorial 512.XP.Tutorial
8.7 12 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial
Chapter 9: Infinite Sequences and Series
9.1 30 501.XP 502.XP 503.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP.Tutorial 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP.Tutorial 527.XP.Tutorial 528.XP.Tutorial 529.XP.Tutorial
9.2 11 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP
9.3 17 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial
9.4 28 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP.Tutorial
9.5 10 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP
9.6 31 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP.Tutorial 524.XP 525.XP 526.XP 527.XP.Tutorial 528.XP 529.XP 530.XP 531.XP.Tutorial
9.7 22 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP
9.8 25 501.XP.Tutorial 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP.Tutorial 525.XP.Tutorial
9.9 5 501.XP 502.XP 503.XP 504.XP 505.XP
Chapter 10: Parametric Equations and Polar Coordinates
10.1 14 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP.Tutorial 514.XP
10.2 24 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP.Tutorial 521.XP 522.XP 523.XP.Tutorial 524.XP
10.3 19 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP
10.4 4 501.XP.Tutorial 502.XP 503.XP 504.XP
10.5 13 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP
10.6 6 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP
Chapter 11: Vectors and the Geometry of Space
11.1 2 501.XP.Tutorial 502.XP.Tutorial
11.2 1 501.XP.Tutorial
11.3 1 501.XP.Tutorial
Total 1621