# University Calculus: Alternate Edition 1st edition

Joel Hass, Maurice Weir and George Thomas
Publisher: Pearson Education

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$29.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Functions
• 1.1: Functions and Their Graphs (8)
• 1.2: Combining Functions; Shifting and Scaling Graphs (11)
• 1.3: Trigonometric Functions (10)
• 1.4: Graphing with Calculators and Computers

• Chapter 2: Limits and Continuity
• 2.1: Rates of Change and Tangents to Curves (2)
• 2.2: Limit of a Function and Limit Laws (11)
• 2.3: The Precise Definition of a Limit (7)
• 2.4: One-Sided Limits and Limits at Infinity (13)
• 2.5:Infinite Limits and Vertical Asymptotes (7)
• 2.6: Continuity (10)
• 2.7: Tangents and Derivatives at a Point (6)
• 2: Questions to Guide Your Review
• 2: Practice Exercises

• Chapter 3: Differentiation
• 3.1: The Derivative as a Function (7)
• 3.2: Differentiation Rules (8)
• 3.3: The Derivative as a Rate of Change (5)
• 3.4: Derivatives of Trigonometric Functions (7)
• 3.5: The Chain Rule (9)
• 3.6: Implicit Differentiation (2)
• 3.7: Related Rates (4)
• 3.8: Linearization and Differentials (5)
• 3.9: Parametrizations of Plane Curves
• 3: Questions to Guide Your Review
• 3: Practice Exercises

• Chapter 4: Applications of Derivatives
• 4.1: Extreme Values of Functions (8)
• 4.2: The Mean Value Theorem (6)
• 4.3: Monotonic Functions and the First Derivative Test (9)
• 4.4: Concavity and Curve Sketching (7)
• 4.5: Applied Optimization (8)
• 4.6: Newton's Method (4)
• 4.7: Antiderivatives (9)
• 4: Questions to Guide Your Review
• 4: Practice Exercises

• Chapter 5: Integration
• 5.1: Area and Estimating with Finite Sums (7)
• 5.2: Sigma Notation and Limits of Finite Sums (8)
• 5.3: The Definite Integral (11)
• 5.4: The Fundamental Theorem of Calculus (8)
• 5.5: Indefinite Integrals and the Substitution Rule (9)
• 5.6: Substitution and Area Between Curves (10)
• 5: Questions to Guide Your Review
• 5: Practice Exercises

• Chapter 6: Applications of Definite Integrals
• 6.1: Volumes by Slicing and Rotation About an Axis (5)
• 6.2: Volumes by Cylindrical Shells (8)
• 6.3: Lengths of Plane Curves (6)
• 6.4: Areas of Surfaces of Revolution (8)
• 6.5: Work (9)
• 6.6: Moments and Centers of Mass (5)
• 6.7: Fluid Pressures and Forces (3)
• 6: Questions to Guide Your Review
• 6: Practice Exercises

• Chapter 7: Transcendental Functions
• 7.1: Inverse Functions and Their Derivatives (8)
• 7.2: Natural Logarithms (10)
• 7.3: Exponential Functions (5)
• 7.4: Inverse Trigonometric Functions (4)
• 7.5: Exponential Change and Separable Differential Equations (11)
• 7.6: Indeterminate Forms and L'Hopital's Rule
• 7.7: Hyperbolic Functions (7)
• 7: Questions to Guide Your Review
• 7: Practice Exercises

• Chapter 8: Techniques of Integration
• 8.1: Integration by Parts (7)
• 8.2: Trigonometric Integrals (6)
• 8.3: Trigonometric Substitutions (6)
• 8.4: Integration of Rational Functions by Partial Fractions (7)
• 8.5: Integral Tables and Computer Algebra Systems (2)
• 8.6: Numerical Integraion
• 8.7: Improper Integrals (7)
• 8: Questions to Guide Your Review
• 8: Practice Exercises

• Chapter 9: Infinite Sequences and Series
• 9.1: Sequences (10)
• 9.2: Infinite Series (9)
• 9.3: The Integral Test (5)
• 9.4: Comparison Tests (4)
• 9.5: The Ration and Root Tests (5)
• 9.6: Alternating Series, Absolute and Conditional Convergence (5)
• 9.7: Power Series (6)
• 9.8: Taylor Maclaurin Series (6)
• 9.9: Convergence of Taylor Series (5)
• 9.10: The Binomial Series
• 9: Questions to Guide Your Review
• 9: Practice Exercises

• Chapter 10: Polar Coordinates and Conics
• 10.1: Polar Coordinates (7)
• 10.2: Graphing in Polar Coordinates (2)
• 10.3: Areas and Lengths in Polar Coordinates (6)
• 10.4: Conic Sections
• 10.5: Conics in Polar Coordinates (4)
• 10.6: Conics and Parametric Equations; The Cycloid (3)
• 10: Questions to Guide Your Review
• 10: Practice Exercises

• Chapter 11: Vectors and the Geometry of Space
• 11.1: Three-Dimensional Coordinate Systems (12)
• 11.2: Vectors (9)
• 11.3: The Dot Product (6)
• 11.4: The Cross Product (10)
• 11.5: Lines and Planes in Space (10)
• 11.6: Cylinders and Quadric Surfaces (12)
• 11: Questions to Guide Your Review
• 11: Practice Exercises

• Chapter 12: Vector-Valued Functions and Motion in Space
• 12.1: Vector Functions and Their Derivatives (5)
• 12.2: Integrals of Vector Functions
• 12.3: Arc Length in Space (6)
• 12.4: Curvature of a Curve (4)
• 12.5: Tangential and Normal Components of Acceleration
• 12.6: Velocity and Acceleration in Polar Coordinates
• 12: Questions to Guide Your Review
• 12: Practice Exercises

• Chapter 13: Partial Derivatives
• 13.1: Functions of Several Variables (7)
• 13.2: Limits and Continuity in Higher Dimensions (11)
• 13.3: Partial Derivatives (11)
• 13.4: The Chain Rule (8)
• 13.5: Directional Derivatives and Gradient Vectors (6)
• 13.6: Tangent Planes and Differentials (8)
• 13.7: Extreme Values and Saddle Points (8)
• 13.8: Lagrange Multipliers (6)
• 13.9: Taylor's Formula for Two Variables (3)
• 13: Questions to Guide Your Review
• 13: Practice Exercises

• Chapter 14: Multiple Integrals
• 14.1: Double and Iterated Integrals over Rectangles
• 14.2: Double Integrals over General Regions (7)
• 14.3: Area by Double Integration (2)
• 14.4: Double Integrals in Polar Form (6)
• 14.5: Triple Integrals in Rectangular Coordinates (8)
• 14.6: Moments and Centers of Mass (5)
• 14.7: Triple Integrals in Cylilndrical and Spherical Coordinates (12)
• 14.8: Substitutions in Multiple Integrals (3)
• 14: Questions to Guide Your Review
• 14: Practice Exercises

• Chapter 15: Integration in Vector Fields
• 15.1: Line Integrals (2)
• 15.2: Vector Fields, Work, Circulation, and Flux (3)
• 15.3: Path Independence, Potential Functions, and Conservative Fields (2)
• 15.4: Green's Theorem in the Plane (3)
• 15.5: Surfaces and Area
• 15.6: Surface Integrals and Flux
• 15.7: Stokes' Theorem
• 15.8: The Divergence Theorem and a Unified Theory
• 15: Questions to Guide Your Review
• 15: Practice Exercises

• Chapter 16: First-Order Difrerential Equations (online)
• 16.1: Solutions, Slope Fields, and Picard's Theorem
• 16.2: First-Order Linear Equations
• 16.3: Applications
• 16.4: Euler's Method
• 16.5: Graphical Solutions of Autonomous Equations
• 16.6: Systems of Equations and Phase Planes

• Chapter 17: Second-Order Differential Equations (online)
• 17.1: Second-Order Linear Equations
• 17.2: Nonhomogeneous Linear Equations
• 17.3: Applications
• 17.4: Euler Equations
• 17.5: Power Series Solutions

• Chapter A: Appendices
• A.1: Real Numbers and the Real Line
• A.2: Mathematical Induction
• A.3: Lines, Circles, and Parabolas
• A.4: Trigonometry Formulas
• A.5: Proofs of Limit Theorems
• A.6: Commonly Occurring Limits
• A.7: Theory of the Real Numbers
• A.8: The Distributive Law for Vector Cross Products
• A.9: The Mixed Derivative Theorem and the Increment Theorem

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Functions
1.1 8 002 004 010 012 016 024 056 061
1.2 11 002 004 006 012 014 018 020 022 028 056 060
1.3 10 002 004 008 010 014 020 040 044 066 068
Chapter 2: Limits and Continuity
2.1 2 002 004
2.2 11 004 006 010 010.alt 012 016 024 030 034 062 068
2.3 7 016 020 024 030 032 052 056
2.4 13 002 002.alt 004 004.alt 014 016 022 026 034 038 048 066 070
2.5 7 002 004 008 010 018 022 044
2.6 10 006 008 014 018 022 030 032 052 058 058.alt
2.7 6 012 016 028 030 036 036.alt
Chapter 3: Differentiation
3.1 7 001 004 006 008 012 016 024
3.2 8 002 004 010 014 022 030 032 051
3.3 5 008 010 024 026 028
3.4 7 006 012 020 024 044 054 056
3.5 9 006 008 020 030 040 050 052 054 064
3.6 2 010 020
3.7 4 002 008 016 020
3.8 5 018 024 036 046 054
Chapter 4: Applications of Derivatives
4.1 8 002 002.alt 006 006.alt 018 026 038 046
4.2 6 002 024 024.alt 028 034 058
4.3 9 002 004 008 014 018 032 034 048 048.alt
4.4 7 002 004 072 074 076 082 082.alt
4.5 8 004 008 010 012 018 022 032 044
4.6 4 004 012 014 020
4.7 9 002 004 012 018 022 054 068 094 096
Chapter 5: Integration
5.1 7 002 012 014 015 016 019 020
5.2 8 002 004 008 012 014 018 020 022
5.3 11 002 004 008 012 014 016 018 030 034 052 064
5.4 8 002 006 008 014 020 032 038 056
5.5 9 002 004 005 006 008 022 046 054 058
5.6 10 002 004 006 018 020 022 026 044 064 070
Chapter 6: Applications of Definite Integrals
6.1 5 004 006 009 012 014
6.2 8 008 010 012 016 018 022 028 030
6.3 6 002 004 006 010 026 028
6.4 8 010 012 014 016 018 022 026 034
6.5 9 002 003 004 005 006 008 010 018 022
6.6 5 004 008 014 024 026
6.7 3 010 012 020
Chapter 7: Transcendental Functions
7.1 8 002 004 006 014 020 022 036 046
7.2 10 002 006 008 022 030 038 040 050 056 062
7.3 5 010 026 032 034 040
7.4 4 029 034 046 072
7.5 11 020 022 026 027 028 030 030.alt 032 036 038 040
7.7 7 002 004 014 026 036 043 052
Chapter 8: Techniques of Integration
8.1 7 004 006 010 012 022 030 034
8.2 6 006 008 014 018 026 032
8.3 6 004 008 016 034 040 042
8.4 7 002 008 012 016 024 030 034
8.5 2 032 036
8.7 7 008 022 024 044 048 054 060
Chapter 9: Infinite Sequences and Series
9.1 10 006 014 018 024 032 042 052 076 098 102
9.2 9 006 008 016 020 030 036 052 056 070
9.3 5 002 008 010 014 024
9.4 4 006 010 020 026
9.5 5 006 010 024 030 042
9.6 5 006 008 018 022 051
9.7 6 006 014 024 034 040 042
9.8 6 002 006 010 020 022 024
9.9 5 004 006 012 020 036
Chapter 10: Polar Coordinates and Conics
10.1 7 024 026 032 044 050 052 060
10.2 2 018 020
10.3 6 002 006 010 012 018 020
10.5 4 030 046 050 060
10.6 3 014 016 018
Chapter 11: Vectors and the Geometry of Space
11.1 12 008 010 016 020 022 036 038 040 042 044 048 050
11.2 9 004 008 012 018 024 026 036 038 046
11.3 6 002 004 008 010 012 014
11.4 10 004 007 008 016 018 024 028 036 038 040
11.5 10 004 006 022 024 028 034 038 048 056 068
11.6 12 001 002 003 004 005 006 007 008 009 010 011 012
Chapter 12: Vector-Valued Functions and Motion in Space
12.1 5 002 006 012 016 018
12.3 6 004 006 010 012 014 016
12.4 4 002 010 019 022
Chapter 13: Partial Derivatives
13.1 7 002 004 006 008 010 012 030
13.2 11 004 006 008 016 018 022 028 032 044 052 054
13.3 11 002 004 006 008 016 024 026 030 044 054 058
13.4 8 004 008 009 026 030 036 040 048
13.5 6 004 006 010 014 018 022
13.6 8 004 012 016 020 028 028.alt 038 048
13.7 8 004 010 016 020 032 040 042 046
13.8 6 008 010 020 022 026 032
13.9 3 002 004 010
Chapter 14: Multiple Integrals
14.2 7 010 012 014 026 036 038 040
14.3 2 016 018
14.4 6 002 004 008 018 024 028
14.5 8 006 008 010 016 024 026 038 042
14.6 5 022 026 028 030 032
14.7 12 002 004 006 008 010 022 024 028 050 056 058 062
14.8 3 002 004 008
Chapter 15: Integration in Vector Fields
15.1 2 010 020
15.2 3 010 023 026
15.3 2 008 030
15.4 3 006 008 018
Chapter 16: First-Order Difrerential Equations (online)
16 0
Chapter 17: Second-Order Differential Equations (online)
17 0
Total 632