Elementary Linear Algebra with Applications 9th edition

Textbook Cover

Bernard Kolman and David Hill
Publisher: Pearson Education


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term $29.95
High School $10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Linear Equations and Matrices
    • 1.1: Systems of Linear Equations (8)
    • 1.2: Matrices (4)
    • 1.3: Matrix Multiplication (7)
    • 1.4: Algebraic Properties of Matrix Operations (5)
    • 1.5: Special Types of Matrices and Partitioned Matrices (5)
    • 1.6: Matrix Transformations
    • 1.7: Computer Graphics (Optional)
    • 1.8: Correlation Coefficient (Optional)

  • Chapter 2: Solving Linear Systems
    • 2.1: Echelon Form of a Matrix (4)
    • 2.2: Solving Linear Systems (10)
    • 2.3: Elementary Matrices; Finding A-1 (6)
    • 2.4: Equivalent Matrices
    • 2.5: LU-Factorization (Optional)

  • Chapter 3: Determinants
    • 3.1: Definition (3)
    • 3.2: Properties of Determinants (7)
    • 3.3: Cofactor Expansion (3)
    • 3.4: Inverse of a Matrix (3)
    • 3.5: Other Applications of Determinants (3)
    • 3.6: Determinants from a Computational Point of View

  • Chapter 4: Real Vector Spaces
    • 4.1: Vectors in the Plane and in 3-Space (9)
    • 4.2: Vector Spaces (3)
    • 4.3: Subspaces (8)
    • 4.4: Span (7)
    • 4.5: Linear Independence (7)
    • 4.6: Basis and Dimension (14)
    • 4.7: Homogeneous Systems (8)
    • 4.8: Coordinates and Isomorphisms
    • 4.9: Rank of a Matrix (17)

  • Chapter 5: Inner Product Spaces
    • 5.1: Length and Direction in R2 and R3 (10)
    • 5.2: Cross Product in R3 (Optional)
    • 5.3: Inner Product Spaces (4)
    • 5.4: Gram-Schmidt Process (8)
    • 5.5: Orthogonal Complements (9)
    • 5.6: Least Squares (Optional) (3)

  • Chapter 6: Linear Transformations and Matrices
    • 6.1: Definition and Examples (8)
    • 6.2: Kernel and Range of a Linear Transformation
    • 6.3: Matrix of a Linear Transformation
    • 6.4: Vector Space of matrices and Vector Space of Linear Transformations (Optional)
    • 6.5: Similarity
    • 6.6: Introduction to Homogeneous Coordinates (Optional)

  • Chapter 7: Eigenvalues and Eigenvectors
    • 7.1: Eigenvalues and Eigenvectors (6)
    • 7.2: Diagonalization and Similar Matrices (10)
    • 7.3: Diagonalization of Symmetric Matrices (5)

  • Chapter 8: Applications of Eigenvalues and Eigenvectors (Optional)
    • 8.1: Stable Age Distribution in a Population; Markov Processes (Optional)
    • 8.2: Spectral Decomposition and Singular value Decomposition
    • 8.3: Dominant Eigenvalue and Principal Component Analysis (Optional)
    • 8.4: Differential Equations (9)
    • 8.5: Dynamical Systems (8)
    • 8.6: Real Quadratic Forms
    • 8.7: Conic Sections
    • 8.8: Quadric Surfaces

  • Chapter B: Appendix B: Complex Numbers
    • B.1: Complex Numbers (4)
    • B.2: Complex Numbers in Linear Algebra (5)

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
XP - Extra Problem


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter B: Appendix B: Complex Numbers
B.1 4 001 002 007 009
B.2 5 001 003 004 005 011
Chapter 1: Linear Equations and Matrices
1.1 8 001 002 004 006 010 014 016 022
1.2 4 004 006 008 010
1.3 7 012 014 016 018 019 026 030
1.4 5 008 010 012 022 032
1.5 5 016 030 032 035 036
Chapter 2: Solving Linear Systems
2.1 4 002 006 008 012
2.2 10 004 006 008 010 012 014 016 020 022 026
2.3 6 007 008 009 017 019 020
Chapter 3: Determinants
3.1 3 003 005 011
3.2 7 002 003 004 007 023 025 026
3.3 3 004 006 007
3.4 3 001 002 003
3.5 3 001 002 003
Chapter 4: Real Vector Spaces
4.1 9 005 006 008 011 014 015 016 017 019
4.2 3 002 008 010
4.3 8 002 006 010 016 017 019 033 034
4.4 7 003 004 005 006 007 010 012
4.5 7 004 005 006 011 012 015 016
4.6 14 002 003 007 008 011 012 014 015 016 017 019 020 023 024
4.7 8 002 005 006 007 008 010 011 012
4.9 17 001 003 006 008 009 010 012 013 014 016 020 022 029 030 032 034 036
Chapter 5: Inner Product Spaces
5.1 10 002 006 008 010 017 018 025 026 027 028
5.3 4 008 029 033 034
5.4 8 001 003 010 011 014 016 022 028
5.5 9 001 003 004 007 012 014 016 018 020
5.6 3 003 011 012
Chapter 6: Linear Transformations and Matrices
6.1 8 001 002 007 010 011 012 013 014
Chapter 7: Eigenvalues and Eigenvectors
7.1 6 005 006 007 008 017 018
7.2 10 006 007 008 010 011 012 013 015 017 019
7.3 5 002 018 019 020 022
Chapter 8: Applications of Eigenvalues and Eigenvectors (Optional)
8.4 9 001 002 003 005 006 007 008 009 010
8.5 8 001.XP 002.XP 003.XP 004.XP 005.XP 006.XP 007.XP 008.XP
 Chapter 9
9 0  
 Chapter 10
10 0  
Total 230