Calculus: An Applied Approach 9th edition

Textbook Cover

Ron Larson
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

personal study plan

Personal Study Plan Module

Your students can use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A $100.00
High School $21.50 $35.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Functions, Graphs, and Limits
    • 1.1: The Cartesian Plane and the Distance Formula (29)
    • 1.2: Graphs of Equations (33)
    • 1.3: Lines in the Plane and Slope (37)
    • 1.4: Functions (35)
    • 1.5: Limits (37)
    • 1.6: Continuity (30)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 2: Differentiation
    • 2.1: The Derivative and the Slope of a Graph (31)
    • 2.2: Some Rules for Differentiation (36)
    • 2.3: Rates of Change: Velocity and Marginals (28)
    • 2.4: The Product and Quotient Rules (33)
    • 2.5: The Chain Rule (34)
    • 2.6: Higher-Order Derivatives (27)
    • 2.7: Implicit Differentiation (30)
    • 2.8: Related Rates (27)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 3: Applications of the Derivative
    • 3.1: Increasing and Decreasing Functions (30)
    • 3.2: Extrema and the First-Derivative Test (29)
    • 3.3: Concavity and the Second-Derivative Test (33)
    • 3.4: Optimization Problems (30)
    • 3.5: Business and Economics Applications (26)
    • 3.6: Asymptotes (36)
    • 3.7: Curve Sketching: A Summary (28)
    • 3.8: Differentials and Marginal Analysis (24)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 4: Exponential and Logarithmic Functions
    • 4.1: Exponential Functions (18)
    • 4.2: Natural Exponential Functions (24)
    • 4.3: Derivatives of Exponential Functions (25)
    • 4.4: Logarithmic Functions (46)
    • 4.5: Derivatives of Logarithmic Functions (42)
    • 4.6: Exponential Growth and Decay (24)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 5: Integration and Its Applications
    • 5.1: Antiderivatives and Indefinite Integrals (38)
    • 5.2: Integration by Substitution and The General Power Rule (32)
    • 5.3: Exponential and Logarithmic Integrals (33)
    • 5.4: Area and the Fundamental Theorem of Calculus (49)
    • 5.5: The Area of the Region Bounded by Two Graphs (27)
    • 5.6: The Definite Integral as the Limit of a Sum (22)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 6: Techniques of Integration
    • 6.1: Integration by Parts and Present Value (37)
    • 6.2: Integration Tables (30)
    • 6.3: Numerical Integration (28)
    • 6.4: Improper Integrals (28)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 7: Functions of Several Variables
    • 7.1: The Three-Dimensional Coordinate System (24)
    • 7.2: Surfaces in Space (28)
    • 7.3: Functions of Several Variables (26)
    • 7.4: Partial Derivatives (39)
    • 7.5: Extrema of Functions of Two Variables (28)
    • 7.6: Lagrange Multipliers (29)
    • 7.7: Least Squares Regression Analysis (25)
    • 7.8: Double Integrals and Area in the Plane (26)
    • 7.9: Applications of Double Integrals (21)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 8: Trigonometric Functions
    • 8.1: Radian Measure of Angles (28)
    • 8.2: The Trigonometric Functions (43)
    • 8.3: Graphs of Trigonometric Functions (38)
    • 8.4: Derivatives of Trigonometric Functions (48)
    • 8.5: Integrals of Trigonometric Functions (39)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 9: Probability and Calculus
    • 9.1: Discrete Probability (25)
    • 9.2: Continuous Random Variables (23)
    • 9.3: Expected Value and Variance (25)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 10: Series and Taylor Polynomials
    • 10.1: Sequences (35)
    • 10.2: Series and Convergences (40)
    • 10.3: p-Series and the Ratio Test (31)
    • 10.4: Power Series and Taylor's Theorem (31)
    • 10.5: Taylor Polynomials (19)
    • 10.6: Newton's Method (23)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter 11: Differential Equations
    • 11.1: Solutions of Differential Equations (17)
    • 11.2: Separation of Variables (19)
    • 11.3: First-Order Linear Differential Equations (15)
    • 11.4: Applications of Differential Equations (17)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter A: Appendix A
    • A.1: The Real Number Line and Order (25)
    • A.2: Absolute Value and Distance on the Real Number Line (26)
    • A.3: Exponents and Radicals (24)
    • A.4: Factoring Polynomials (24)
    • A.5: Fractions and Rationalization (19)
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter B: Appendix B
    • B.1: Alternate Introduction to the Fundamental Theorem of Calculus
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter C: Appendix C
    • C.1: Differentiation and Integration Formulas
    • C.2: Formulas from Business and Finance
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter D: Appendix D
    • D.1: Review of Algebra, Geometry, and Trigonometry
    • D.2: Units of Measurements
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises

  • Chapter E: Appendix E
    • E.1: Graphing Utility Programs
    • Test Yourself
    • Test Yourself
    • Test Yourself
    • Review Exercises


Use the Textbook Edition Upgrade Tool to automatically update assignments from this title to corresponding questions in the newest edition of this textbook.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
MI - Master It
SBS - Step By Step
XP - Extra Problem


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter A: Appendix A
A.1 25 002 004 006 008 010 011.MI 011.MI.SA 012 014 015.MI 015.MI.SA 016 018 020.MI 020.MI.SA 022 024 026 028.SBS 030 032 034 035 037 038
A.2 26 002 004 006 008.MI 008.MI.SA 010 012.MI 012.MI.SA 014 016 018 020 022 024 026.SBS 028 030 036.MI 036.MI.SA 038 040 041 043 044 046 048
A.3 24 002 004 006 010 012 014 016 020 022 024 026.SBS 030 032 036 038 042 046.MI 046.MI.SA 048 050 054 056 057.MI 057.MI.SA
A.4 24 002.MI 002.MI.SA 004 006 010 014 018 022 028 032 034 036.MI 036.MI.SA 038 042 046 050 054 058 062 068.SBS 070 074 076
A.5 19 006 013.MI 013.MI.SA 018 020 022 024 026 028 030.MI 030.MI.SA 032 034 036.SBS 038.MI 038.MI.SA 040 042 044
Chapter 1: Functions, Graphs, and Limits
1.1 29 003 004 006 007 008 011 012 018 020 021.SBS 022 023 024.MI 024.MI.SA 025 030 035 038 040.MI 040.MI.SA 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
1.2 33 002 004 006 008 010 023.MI 023.MI.SA 025 029 031 033 035 037 039 041 044 048 050 052 055 058 059 066 068 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP 506.XP 507.XP.SBS 508.XP
1.3 37 002 004 006 009.MI 009.MI.SA 011 013 015 024 026 028 030.MI 030.MI.SA 032 036 040 042 044 050 052 054 056 058 060 063 065 067 069 071 075 077 080 082 084 501.XP.MI 501.XP.MI.SA 502.XP
1.4 35 002 006 007 010 012 014 016 017 018 020 022 026 028 030.MI 030.MI.SA 032 034 036 038 039 046 048 050 052 054.SBS 058 062 064 066 071.MI 071.MI.SA 072 075 501.XP 502.XP
1.5 37 002 004 006.MI 006.MI.SA 010 014 019 022.MI 022.MI.SA 024 026 028 030 032 034 036 038 039.MI 039.MI.SA 040.MI 040.MI.SA 042 046 048 052 054 057 062 066 070 072 501.XP 503.XP 504.XP 505.XP 506.XP 507.XP
1.6 30 002 004.MI 004.MI.SA 006 010 012 014 016 018 020 022 027 029 030.MI 030.MI.SA 032 034 040 042 046 048 052 054 056.SBS 057 061 063 069 501.XP 502.XP
Chapter 2: Differentiation
2.1 31 008 010 012 016 018 020 022.MI 022.MI.SA 026 028 032 034 036 040 042 044 046 050 052 054 057 064 066 070 501.XP 502.XP.MI 502.XP.MI.SA 503.XP.MI 503.XP.MI.SA 505.XP 506.XP
2.2 36 002 004 006 008 010 012 014 018 020 022 026.SBS 028 030 032 034 039 042 044 048 052 054 056 058 060 063 065 066.MI 066.MI.SA 077 080 501.XP 502.XP 504.XP 505.XP 506.XP 507.XP
2.3 28 003 004 006.MI 006.MI.SA 008 010 012 014 016.MI 016.MI.SA 017 019 022 024 026.MI 026.MI.SA 028 030.MI 030.MI.SA 032 034 037 042 044 501.XP 502.XP 503.XP 504.XP
2.4 33 002 004 005 008 010.MI 010.MI.SA 012 016 018 022 024 026.MI 026.MI.SA 028 032 034 038 040 042 046 050 053 062 063 064.MI 064.MI.SA 072 074 501.XP 502.XP 503.XP 504.XP 505.XP
2.5 34 002 004 008 010 012.MI 012.MI.SA 014 022 024 026.MI 026.MI.SA 028 032 034 038 040 048 050 053 054 056 060 062.MI 062.MI.SA 066 068 070 071 073 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA
2.6 27 002.MI 002.MI.SA 004 008 010 014 016 020.MI 020.MI.SA 022 026 027 030 032 036 038 501.XP 503.XP.MI 503.XP.MI.SA 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP 510.XP
2.7 30 002 004 006.MI 006.MI.SA 008 009 010 014 016 018.MI 018.MI.SA 021 023.SBS 024.MI 024.MI.SA 028 031 034 036 038 042 044 046 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA
2.8 27 001 002 003 004 005.MI 005.MI.SA 006 009 012 013 014.MI 014.MI.SA 017.SBS 019.MI 019.MI.SA 020 021.MI 021.MI.SA 022 023 024 025.MI 025.MI.SA 501.XP 502.XP 503.XP 504.XP
Chapter 3: Applications of the Derivative
3.1 30 002 006 008 010 012 014.MI 014.MI.SA 016 018.SBS 020 021 022 026 028.MI 028.MI.SA 030 032 034 036 038 041 042 044 047.MI 047.MI.SA 048 501.XP.MI 501.XP.MI.SA 502.XP 503.XP
3.2 29 002.MI 002.MI.SA 004 005 006 008 010 012 014 016 020 022 024.MI 024.MI.SA 026 027 028.SBS 030 036 038 040 042 048 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP
3.3 33 002 006 007.MI 007.MI.SA 009 012 014 016 019 022 024 026 028 030 032 034 038 040 044 048 050 058 060 062 064.SBS 066 070.MI 070.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP
3.4 30 001 003 006 008 009 012 013 015 018 020.MI 020.MI.SA 022 024 026 030.MI 030.MI.SA 032 033 035 037 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
3.5 26 002.MI 002.MI.SA 004 006 008 011 014 016 018 020.MI 020.MI.SA 021 022 024 026 028 030 036 041.SBS 501.XP 502.XP 503.XP 504.XP 505.XP.MI 505.XP.MI.SA 506.XP
3.6 36 002 004 006 008 010 012 014 016 022 023 026 028 030 034 036 038 040 048 056 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP.SBS 507.XP 508.XP 509.XP 510.XP.MI 510.XP.MI.SA 511.XP 512.XP 513.XP 514.XP 515.XP
3.7 28 002 004 006.MI 006.MI.SA 008.MI 008.MI.SA 010.SBS 012 013.MI 013.MI.SA 015 018 020 022 026 028 030 031 032 033 046 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 506.XP 507.XP 508.XP
3.8 24 008 010 012 014 016 018 020 022 025 028.MI 028.MI.SA 030 032 034 037.MI 037.MI.SA 038 501.XP 502.XP.MI 502.XP.MI.SA 503.XP.SBS 504.XP 505.XP 506.XP
Chapter 4: Exponential and Logarithmic Functions
4.1 18 002 004 006.MI 006.MI.SA 010 012 014 018 020 024.MI 024.MI.SA 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP 506.XP
4.2 24 002 004 006 008 012.MI 012.MI.SA 014 022 026 028 030 032 034.MI 034.MI.SA 036.SBS 038 042 044.MI 044.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP
4.3 25 004 006 008 010.MI 010.MI.SA 016 018 022 026 028 030 032 034 038 040 042.MI 042.MI.SA 047 050 052 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
4.4 46 002 004 006.MI 006.MI.SA 008 010 012 014 016 018 020.MI 020.MI.SA 022 024 026 028 032 034 040.MI 040.MI.SA 041 044 048 050 052.MI 052.MI.SA 054.MI 054.MI.SA 058 060 062 064 066 068 070 076 078 080 082 086 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
4.5 42 002 004 006 008 010 014 016 018.MI 018.MI.SA 022 030 032 034 036 038 040 042 044 046 049 052 054.MI 054.MI.SA 056 058 060 064 074 076 078 083 501.XP.MI 501.XP.MI.SA 502.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
4.6 24 002 004.MI 004.MI.SA 006 008 010 012 016 018.MI 018.MI.SA 019 026 028 030 032 034.SBS 036 038 043 045 501.XP 502.XP 503.XP 504.XP
Chapter 5: Integration and Its Applications
5.1 38 008 010 012 014.MI 014.MI.SA 016 018 020 022 024 026 028 030 032 034.MI 034.MI.SA 038 042 045.MI 045.MI.SA 048 050 052 054 056 058 060.MI 060.MI.SA 062 065 068 501.XP 502.XP 503.XP 506.XP 507.XP 508.XP.SBS 509.XP
5.2 32 002 004 006 008 010.MI 010.MI.SA 012 014 016.MI 016.MI.SA 018 020 024 026 028 031.MI 031.MI.SA 032.MI 032.MI.SA 034 036 040 044 048 050 052.MI 052.MI.SA 054 055 058 501.XP 503.XP
5.3 33 002.MI 002.MI.SA 004.MI 004.MI.SA 005 008 011 014 016 020 022 024.MI 024.MI.SA 026.SBS 028 030 032 034 038 042 044 048 050 052 056 501.XP 502.XP 503.XP 505.XP 506.XP 507.XP 508.XP 509.XP
5.4 49 002 006 008 010 012.MI 012.MI.SA 016 018 020 022 024 027.MI 027.MI.SA 030 032 033 034.SBS 036 038 040 042 044 046 048.MI 048.MI.SA 052 053 055 060 062 064 066 070 073 074 076 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 509.XP 510.XP 511.XP 512.XP 513.XP
5.5 27 002 004 008.MI 008.MI.SA 010 012 014 018 027 028 030 036 038 040 042.MI 042.MI.SA 044 048 050.MI 050.MI.SA 053 056 057 501.XP 505.XP 506.XP 507.XP
5.6 22 002.MI 002.MI.SA 004 008 010 012 014 016 027 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP.SBS 506.XP 507.XP 508.XP.MI 508.XP.MI.SA 509.XP 510.XP 511.XP
Chapter 6: Techniques of Integration
6.1 37 002 004 006 007 008 010 012 014 016 018.MI 018.MI.SA 020 022 026 028 032.MI 032.MI.SA 034 036 040 041 042 044 048 052 064 066 068.MI 068.MI.SA 070 072 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
6.2 30 002 004.MI 004.MI.SA 006 008 010.SBS 012 014.MI 014.MI.SA 016 018 022 024 026 028 032 034 038 040 042 046 050 056 059 061.MI 061.MI.SA 501.XP 502.XP 503.XP 504.XP
6.3 28 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 020 022 023 024 026 032.MI 032.MI.SA 034 036 038.MI 038.MI.SA 040 042 501.XP 502.XP 503.XP 504.XP 505.XP
6.4 28 002 004 006 008 010.MI 010.MI.SA 012 014.MI 014.MI.SA 016 018 022 024 029 032.SBS 034 036.MI 036.MI.SA 038 040 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
Chapter 7: Functions of Several Variables
7.1 24 006 007 008 012 014 016.SBS 018.MI 018.MI.SA 020 022 024 026 028 030 032 034 036 038 040.MI 040.MI.SA 042 044 057 501.XP
7.2 28 014.MI 014.MI.SA 016 018 020 022 023 030 032 034 036 038 040 042 044 046 048.MI 048.MI.SA 049 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP 508.XP
7.3 26 002 004 006.MI 006.MI.SA 008.MI 008.MI.SA 010 012 014 016 018 020 022 028 029 032 044.SBS 046 501.XP 502.XP 503.XP.MI 503.XP.MI.SA 505.XP.MI 505.XP.MI.SA 506.XP 507.XP
7.4 39 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 040.MI 040.MI.SA 042 044 046 048 052 054 056 060 062 064 069.MI 069.MI.SA 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 505.XP
7.5 28 002 004 006.MI 006.MI.SA 008.MI 008.MI.SA 010 012 014 020 022.MI 022.MI.SA 024 026 028 030 032 034 036 038.SBS 040 042 044 046 048.MI 048.MI.SA 050 501.XP
7.6 29 002 004 006.MI 006.MI.SA 008 010.MI 010.MI.SA 012 014 016 018 019 021.MI 021.MI.SA 024 026 029 031 033 034 038 040 041 501.XP.SBS 502.XP 503.XP 505.XP 506.XP.MI 506.XP.MI.SA
7.7 25 002 004 006 008 009.MI 009.MI.SA 010 012 014 018 020 024 026.MI 026.MI.SA 028 501.XP.SBS 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP
7.8 26 003 004 007.MI 007.MI.SA 008 010 012 014 016 020.MI 020.MI.SA 021 022.MI 022.MI.SA 026 029 032 034 038 048 501.XP.MI 501.XP.MI.SA 503.XP.MI 503.XP.MI.SA 504.XP 505.XP
7.9 21 002.MI 002.MI.SA 010 012 014 016.MI 016.MI.SA 018 020 022 024 026 028 030 032 033 036 501.XP 502.XP.MI 502.XP.MI.SA 503.XP
Chapter 8: Trigonometric Functions
8.1 28 003 005 008 010 012.MI 012.MI.SA 014 016 020 022 024 026 028 030 034 036 038 042.MI 042.MI.SA 046.SBS 049.MI 049.MI.SA 051 054 056 501.XP 502.XP 503.XP
8.2 43 002 003 006 008 010 012 014 016 018 021 022 023 026 027 030 031 032 039 040 041 042 044 046 048 050 052 054 055.MI 055.MI.SA 056.MI 056.MI.SA 059 062 072.SBS 074 082 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA
8.3 38 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 020.MI 020.MI.SA 021 028 030 032 034 036 042 044 048 050 052 060 062 064 065 070 071 074 076 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP 507.XP
8.4 48 002 004 006 008 010 012 014 016 018.MI 018.MI.SA 020 022 024 026 028 030 032 034 036 040 042.MI 042.MI.SA 044.SBS 046 048 050.MI 050.MI.SA 052 054 058 060 062 068 070 072 074 082 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP
8.5 39 001 004.SBS 006.MI 006.MI.SA 008 010 012 014 016 020.MI 020.MI.SA 022.MI 022.MI.SA 024 026 028 032 034 036 038 040 042 044 046 048 050 052 058 060 062 068 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP
Chapter 9: Probability and Calculus
9.1 25 002 004 006 007 008 010 012 016 018 020 022 024 026 028 030.MI 030.MI.SA 032.SBS 036 038 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 504.XP
9.2 23 002 004 006 008 009 012.SBS 014 016.MI 016.MI.SA 018 020 022 024 027 029 030 032 035 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
9.3 25 002.SBS 003 014 016 018 020 022 024 026 028 030 032 034 036 038.MI 038.MI.SA 040 041 043 045 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
Chapter 10: Series and Taylor Polynomials
10.1 35 002.MI 002.MI.SA 004 006 008 010 012 014 015 016.MI 016.MI.SA 018 020 022 024 026 028 032.SBS 034 038 048 050 052 054 056 058 060 062 064 501.XP 502.XP 503.XP 504.XP 505.XP.MI 505.XP.MI.SA
10.2 40 002 004 006 008 010.MI 010.MI.SA 012 014 020 022 024.MI 024.MI.SA 026 029 030 032 034 036 040 042 044 046 048 052 055 056 058 060 064 065.MI 065.MI.SA 066 068 070 501.XP.SBS 502.XP 503.XP 504.XP 505.XP 506.XP
10.3 31 004 006 010.SBS 012 014 016.MI 016.MI.SA 018 020.MI 020.MI.SA 022 024 026 028 030.MI 030.MI.SA 032 038 041 048 052 054 056 058 062 064 501.XP 502.XP 503.XP.MI 503.XP.MI.SA 504.XP
10.4 31 002 004 006.SBS 009 010.MI 010.MI.SA 012.MI 012.MI.SA 014 016 020 022 026 028 030 032 034 036 038 040 041 044.MI 044.MI.SA 046 048 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
10.5 19 002 004 006 008 010 012 014 016 018 019 026.MI 026.MI.SA 028.MI 028.MI.SA 030.MI 030.MI.SA 032 501.XP.SBS 502.XP
10.6 23 002.SBS 004 006 009 011 018 020 022 024 027 030 032.MI 032.MI.SA 044 046 048.MI 048.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
Chapter 11: Differential Equations
11.1 17 014 016.MI 016.MI.SA 018 020 021 022.MI 022.MI.SA 027 028 032.MI 032.MI.SA 033.MI 033.MI.SA 035 038 040
11.2 19 007 009 012.MI 012.MI.SA 013 015 017 020 023 025 026 031.MI 031.MI.SA 033 035 038 040 041 045
11.3 15 001 004 007 009 011 014 016 027 029 032.MI 032.MI.SA 034 035 038 039
11.4 17 002 004 006 008 010 013 015 017 019 023 026 028 031 032.MI 032.MI.SA 034.MI 034.MI.SA
Total 2066