# Elementary Linear Algebra, International Edition 7th edition

Ron Larson
Publisher: Cengage Learning

## eBook

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A N/A
Higher Education Multi-Term N/A \$125.00
High School N/A N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Systems of Linear Equations
• 1.1: Introduction to Systems of Linear Equations (26)
• 1.2: Gaussian Elimination and Gauss-Jordan Elimination (28)
• 1.3: Applications of Systems of Linear Equations (13)
• 1: Review Exercises

• Chapter 2: Matrices
• 2.1: Operations with Matrices (29)
• 2.2: Properties of Matrix Operations (23)
• 2.3: The Inverse of a Matrix (27)
• 2.4: Elementary Matrices (25)
• 2.5: Applications of Matrix Operations (20)
• 2: Review Exercises

• Chapter 3: Determinants
• 3.1: The Determinant of a Matrix (23)
• 3.2: Determinants and Elementary Operations (20)
• 3.3: Properties of Determinants (25)
• 3.4: Applications of Determinants (27)
• 3: Review Exercises

• Chapter 4: Vector Spaces
• 4.1: Vectors in Rn (25)
• 4.2: Vector Spaces (17)
• 4.3: Subspaces of Vector Spaces (22)
• 4.4: Spanning Sets and Linear Independence (27)
• 4.5: Basis and Dimension (29)
• 4.6: Rank of a Matrix and Systems of Linear Equations (21)
• 4.7: Coordinates and Change of Basis (19)
• 4.8: Applications of Vector Spaces (23)
• 4: Review Exercises

• Chapter 5: Inner Product Spaces
• 5.1: Length and Dot Product in Rn (32)
• 5.2: Inner Product Spaces (25)
• 5.3: Orthonormal Bases: Gram-Schmidt Process (19)
• 5.4: Mathematical Models and Least Squares Analysis (20)
• 5.5: Applications of Inner Product Spaces (27)
• 5: Review Exercises

• Chapter 6: Linear Transformations
• 6.1: Introduction to Linear Transformations (18)
• 6.2: The Kernel and Range of a Linear Transformation (18)
• 6.3: Matrices for Linear Transformations (19)
• 6.4: Transition Matrices and Similarity (12)
• 6.5: Applications of Linear Transformations (24)
• 6: Review Exercises

• Chapter 7: Eigenvalues and Eigenvectors
• 7.1: Eigenvalues and Eigenvectors (20)
• 7.2: Diagonalization (16)
• 7.3: Symmetric Matrices and Orthogonal Diagonalization (17)
• 7.4: Applications of Eigenvalues and Eigenvectors (22)
• 7: Review Exercises

• Chapter 8: Complex Vector Spaces (online)
• 8.1: Complex Numbers
• 8.2: Conjugates and Division of Complex Numbers
• 8.3: Polar Form and DeMoivre's Theorem
• 8.4: Complex Vector Spaces and Inner Products
• 8.5: Unitary and Hermitian Matrices
• 8: Review Exercises

• Chapter 9: Linear Programming (online)
• 9.1: Systems of Linear Inequalities
• 9.2: Linear Programming Involving Two Variables
• 9.3: The Simplex Method: Maximization
• 9.4: The Simplex Method: Minimization
• 9.5: The Simplex Method: Mixed Constraints
• 9: Review Exercises

• Chapter 10: Numerical Methods (online)
• 10.1: Gaussian Elimination with Partial Pivoting
• 10.2: Iterative Methods for Solving Linear Systems
• 10.3: Power Method for Approximating Eigenvalues
• 10.4: Applications of Numerical Methods
• 10: Review Exercises

• Chapter A: Appendix
• A.1: Mathematical Induction and Other Form of Proofs
• A.2: Online Technology Guide
• A.4: Index

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Systems of Linear Equations
1.1 26 001 003 005 007 011 015 019 021 023 025 027 031 037 045 049 053 055 057 059 065 066.MI 069 071 077 083 089.SBS
1.2 28 001 003 005 008 010 011 015 017 019 023.SBS 026 027 029 031 035 037 039 041 043 045.MI 046 047 049 051 052 053 061 068
1.3 13 003 005 013 015 017 021 023 027 029 031 039 501.XP 502.XP.SBS
Chapter 2: Matrices
2.1 29 002.MI 004 007 009 010 011 013 015.SBS 017 019 021 022 023 031 037 039 043 047 049 053 055 057 059 065 078 079 082 083 501.XP
2.2 23 003 004 006.MI 007 009 011 013 015 016 017 019 031 034 037 041.SBS 043 045 049 051 053 055 067 069
2.3 27 004 005.SBS 009 011 013 015 017 018 021 024 025 032.MI 033 034.MI 036 041 043 045 047 049 051 053 055 057 059 075 082
2.4 25 001 005 007 009 011 013 017 018 019 021 023 025 027 031 038 039 041 043 045 049 050 051 053 056.SBS 501.XP
2.5 20 001 003 004 005 006 007 008 009 010 011 013 017 019 021 023.SBS 026 029 031 037 039
Chapter 3: Determinants
3.1 23 001 003 005 007 011 013 015 019 021 023 029 031 036 039 041 046.SBS 047 051 055 057 061 068 501.XP
3.2 20 001 003 005 007 016 017 021 022.SBS 024 025 027 031 035 039 041 045 046 501.XP 502.XP 503.XP
3.3 25 001 003 005 008.SBS 009 010 013 015 017 021 024 025 029 033 035 037 041 045 049 052 055 071 075 079 501.XP
3.4 27 001 005 007 017.SBS 019 021 028 029 033 034 035 039 041 042 047 049 051 056 058 064 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP
Chapter 4: Vector Spaces
4.1 25 001 002 003 007 008 011 013 015 017 019 021.SBS 024 026 028 030 031 034 037 039 043 048 049 053 501.XP 502.XP
4.2 17 001 002 005 009 010 013 014 017 018 021 024 025 027 032 033 038 043.SBS
4.3 22 001 003 005 007 011 012 016 022 024 025.SBS 026 029 030 031 035 036 040 041 501.XP 502.XP 503.XP 504.XP
4.4 27 002 004 005 006 009 013 016 018 021 023 026 027 029 034 036 037 038 042 043 047 049 050 053 056 057 501.XP.SBS 502.XP
4.5 29 001 005 006 007 008 013 015 019 021 025 029 031 032 033 037 039 040 041 042 045 047 055.SBS 057 059 063 065 067 068 069
4.6 21 001 003 005 009 010 013.SBS 016 017 020 023 025 029 032 033 038 039 045 048 052 056 072
4.7 19 001 003 005 007 009 013 015 019.SBS 023 025 030 031 035 036 040 043 046 047 501.XP
4.8 23 001 003 005 006 009 010 015 020.SBS 022 027 034 043 045 047 054 061 065 068 075 079 501.XP 502.XP 503.XP
Chapter 5: Inner Product Spaces
5.1 32 001 002 005 006 009 011 014 017 018 019 020 021 023 024 028 029 037 039 043 044 048 049 050 054 060 063.SBS 076 077 501.XP 502.XP 503.XP 504.XP
5.2 25 017 019 022 024 026 030 031 035 037 040 045 047 049 051 053 057.SBS 061 063 068 071 076 079 081 097 501.XP
5.3 19 001 007 009 012 017 023 025 027 033 036 037 039 043 047.SBS 054 060 069 501.XP 502.XP
5.4 20 001 002 007 008 012 015 017 019 021 023 024 027 029 035 501.XP 502.XP 503.XP.SBS 504.XP 505.XP 506.XP
5.5 27 003 006 007 008 012 013 020 021 023 029 032.MI 034 035 036 038 039 040 043.SBS 045 046 052 063 064 072 080 501.XP 502.XP
Chapter 6: Linear Transformations
6.1 18 001 003 007 009 013 014 023 027 031 034 037 043 048 052 055 056 064 501.XP.SBS
6.2 18 001 003 006 009 011 013 017 019 025.SBS 033 038 039 045 047 052 053 055 058
6.3 19 001 005 006 008 011 013 015 017 021 025 027 032 034 037 043 044 045 501.XP.SBS 502.XP
6.4 12 001 003 004 005 007 009 011 013 019 020 022.SBS 024
6.5 24 001 003 005 007 011 013 016 018 020 022 024.SBS 027 029 032 035 038 039 041 048 049 053 058 065 501.XP
Chapter 7: Eigenvalues and Eigenvectors
7.1 20 001 006 011 013 015 017 019 021 025 029 037 039 043 060.SBS 063 069 073 076 501.XP 502.XP.SBS
7.2 16 001 005 006 007 008 009 013 015 019.SBS 024 026 027 028 033 036 039
7.3 17 001 003 004 005 011 014 015 016 020 039 043 045 047 048 051 058 059
7.4 22 001 003 004 007.SBS 009 010 013 016 017 019 023 027 031 033 039 041 043 046 047 051 055 062
Chapter 8: Complex Vector Spaces (online)
8 0
Chapter 9: Linear Programming (online)
9 0
Chapter 10: Numerical Methods (online)
10 0
Total 758