# Precalculus 8th edition

Michael Sullivan
Publisher: Pearson Education

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$29.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Graphs
• 1.1: The Distance and Midpoint Formulas (26)
• 1.2: Graphs of Equations in Two Variables; Intercepts; Symmetry (14)
• 1.3: Lines (61)
• 1.4: Circles (16)

• Chapter 2: Functions and Their Graphs
• 2.1: Functions (53)
• 2.2: The Graph of a Function (19)
• 2.3: Properties of Functions (53)
• 2.4: Library of Functions; Piecewise-defined Functions (25)
• 2.5: Graphing Techniques: Transformations (46)
• 2.6: Mathematical Models: Building Functions (21)

• Chapter 3: Linear and Quadratic Functions
• 3.1: Linear Functions and Their Properties
• 3.2: Building Linear Functions from Data (8)
• 3.3: Quadratic Functions and Their Properties (35)
• 3.5: Inequalities Involving Quadratic Functions

• Chapter 4: Polynomial and Rational Functions
• 4.1: Polynomial Functions and Models (49)
• 4.2: Properties of Rational Functions (39)
• 4.3: The Graph of a Rational Function (22)
• 4.4: Polynomial and Rational Inequalities (13)
• 4.5: The Real Zeros of a Polynomial Function (39)
• 4.6: Complex Zeros: Fundamental Theorem of Algebra (26)

• Chapter 5: Exponential and Logarithmic Functions
• 5.1: Composite Functions (42)
• 5.2: One-to-One Functions; Inverse Functions (44)
• 5.3: Exponential Functions (53)
• 5.4: Logarithmic Functions (63)
• 5.5: Properties of Logarithms (52)
• 5.6: Logarithmic and Exponential Equations (38)
• 5.7: Compound Interest (33)
• 5.8: Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models (15)
• 5.9: Building Exponential, Logarithmic, and Logistic Models from Data (6)

• Chapter 6: Trigonometric Functions
• 6.1: Angles and Their Measure (75)
• 6.2: Trigonometric Functions; Unit Circle Approach (42)
• 6.3: Properties of the Trigonometric Functions (42)
• 6.4: Graphs of the Sine and Cosine Functions (49)
• 6.5: Graphs of the Tangent, Cotangent, Cosecant and Secant Functions (14)
• 6.6: Phase Shift; Sinusoidal Curve Fitting (21)

• Chapter 7: Analytic Trigonometry
• 7.1: The Inverse Sine, Cosine, and Tangent Functions (31)
• 7.2: The Inverse Trigonometric Functions (continued) (36)
• 7.3: Trigonometric Identities (9)
• 7.4: Sum and Difference Formulas (38)
• 7.5: Double-angle and Half-angle Formulas (33)
• 7.6: Product-to-Sum and Sum-to-Product Formulas (19)
• 7.7: Trigonometric Equations I (32)
• 7.8: Trigonometric Equations II (28)

• Chapter 8: Applications of Trigonometric Functions
• 8.1: Applications Involving Right Triangles (32)
• 8.2: The Law of Sines (28)
• 8.3: The Law of Cosines (27)
• 8.4: Area of a Triangle (19)
• 8.5: Simple Harmonic Motion; Damped Motion; Combining Waves (12)

• Chapter 9: Polar Coordinates; Vectors
• 9.1: Polar Coordinates (30)
• 9.2: Polar Equations and Graphs (24)
• 9.3: The Complex Plane; De Moivre's Theorem (25)
• 9.4: Vectors (35)
• 9.5: The Dot Product (20)
• 9.6: Vectors in Space
• 9.7: The Cross Product

• Chapter 10: Analytic Geometry
• 10.1: Conics
• 10.2: The Parabola (37)
• 10.3: The Ellipse (29)
• 10.4: The Hyperbola (27)
• 10.5: Rotation of Axes; General Form of a Conic (17)
• 10.6: Polar Equations of Conics (16)
• 10.7: Plane Curves and Parametric Equations (20)

• Chapter 11: Systems of Equations and Inequalities
• 11.1: Systems of Linear Equations: Substitution and Elimination (38)
• 11.2: Systems of Linear Equations: Matrices (33)
• 11.3: Systems of Linear Equations: Determinants (30)
• 11.4: Matrix Algebra (30)
• 11.5: Partial Fraction Decomposition (21)
• 11.6: Systems of Nonlinear Equations (30)
• 11.7: Systems of Inequalities (17)
• 11.8: Linear Programming (18)

• Chapter 12: Sequences; Induction; The Binomial Theorem
• 12.1: Sequences (37)
• 12.2: Arithmetic Sequences (22)
• 12.3: Geometric Sequences; Geometric Series (45)
• 12.4: Mathematical Induction (1)
• 12.5: The Binomial Theorem (15)

• Chapter 13: Counting and Probability
• 13.1: Counting (32)
• 13.2: Permutations and Combinations (30)
• 13.3: Probability (36)

• Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function
• 14.1: Finding Limits Using Tables and Graphs
• 14.2: Algebra Techniques for Finding Limits
• 14.3: One-sided Limits; Continuous Functions
• 14.4: The Tangent Problem; The Derivative
• 14.5: The Area Problem; The Integral

• Chapter A: Review
• A.1: Algebra Essentials (50)
• A.2: Geometry Essentials (25)
• A.3: Polynomials (9)
• A.4: Synthetic Division (4)
• A.5: Rational Expressions
• A.6: Solving Equations
• A.7: Complex Numbers; Quadratic Equations in the Complex Number System (41)
• A.8: Problem Solving: Intrest, Mixture, Uniform Motion, Constant Rate Job Applications (36)
• A.9: Interval Notation; Solving Inequalities (25)
• A.10: nth Roots; Rational Exponents (19)

• Chapter B: Graphing Utilities
• B.1: The Viewing Rectangle (9)
• B.2: Using a Graphing Utility to Graph Equations
• B.3: Using a Graphing Utility to Locate Intercepts and Check for Symmetry
• B.4: Using a Graphing Utility to Solve Equations
• B.5: Square Screens
• B.6: Using a Graphing Utility to Graph Inequalities
• B.7: Using a Graphing Utility to Solve Systems of Linear Equations
• B.8: Using a Graphing Utility to Graph a Polar Equation
• B.9: Using a Graphing Utility to Graph Parametric Equations

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Graphs
1.1 26 XP.001 XP.002 005 006 008 009 010 011 013 015 017 022 023 026 027 029 038 039 042 043 045 052 055 057 059 063
1.2 14 XP.004 XP.007 XP.039 XP.057 XP.059 003 011 013 015 039 041 059 063 065
1.3 61 XP.121 001 003 004 005 010 011 013 015 018 019 022 037 038 039 040 041 042 043 044 045 046 049 051 053 055 059 061 063 065 067 069 071 073 075 077 079 081 083 085 087 089 101 102 107 109 115 116 129 130 131 132 133 134 135 136 137 138 139 140 141
1.4 16 XP.006 XP.061 XP.062 XP.063 XP.064 XP.081 XP.085 XP.087 XP.091 XP.093 XP.095 XP.096 XP.097 XP.098 XP.099 XP.100
Chapter 2: Functions and Their Graphs
2.1 53 XP.016 XP.018 XP.027.alt XP.061 XP.063 XP.065 XP.067 XP.067.alt XP.069 XP.sup.01 XP.sup.02 XP.sup.03 005 006 007 010 011 012 015 017 019 021 023 025 027 029 032 033 035 037 039 047 049 051 053 055 057 059 071 072 073 074 075 080 083 085 087 093 096 097 099 104 105
2.2 19 003 008 009 010 011 013 015 017 021 023 024 027 031 036 037 038 039 040 043
2.3 53 XP.011 XP.012 XP.013 XP.014 XP.015 XP.016 XP.017 XP.018 XP.019 XP.020 XP.022.alt XP.026.alt XP.037 XP.039 XP.040 XP.045 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 025 026 027 029 030 031 032 033 035 037 039 041 043 045 063 065 083 084 085
2.4 25 XP.004 XP.037 XP.048.alt XP.sup.01 005 006 008 009 010 011 012 013 014 015 025 026 027 029 031 041 042 043 050 053 055
2.5 46 XP.030.alt XP.sup.01 XP.sup.02 XP.sup.03 XP.sup.04 XP.sup.05 001 002 004 005 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 029 031 033 035 039 043 053 057 065 066 075 077 085 086 092
2.6 21 XP.008 XP.008.alt XP.010.alt XP.030.alt XP.sup.01 XP.sup.02 XP.sup.03 001 002 003 005 006 007 009 011 013 015 016 018 020 022
Chapter 3: Linear and Quadratic Functions
3.2 8 XP.017 003 004 005 006 007 008 020
3.3 35 XP.001 XP.002 XP.003 XP.003a XP.004 005 006 008 010 011 012 013 014 015 016 017 018 035 037 041 043 047 049 051 053 055 057 061 063 075 081 082 093 095 096
3.4 15 XP.001 XP.002 004 005 007 009 010 011 012 012.alt 013 015 016 017 027
Chapter 4: Polynomial and Rational Functions
4.1 49 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 023 025 033 035 037 039 041 043 045 047 048 049 050 051 055 061 062 064 067 071 077 087 089 091 093 095 097 102 103 104 105 106 107
4.2 39 XP.048.alt XP.050.alt XP.068.alt XP.068.alt.2 XP.096 005 006 007 008 009 010 011 013 015 017 018 021 023 024 025 028 031 032 033 034 036 037 038 039 040 041 042 045 046 047 048 050 051 059
4.3 22 XP.043 XP.sup.01 XP.sup.02 002 003 004 007 015 017 019 033 045 046 047 049 050 053 054 055 056 060 061
4.4 13 XP.050.alt 013 015 017 019 021 025 027 029 041 045 055 056
4.5 39 P.052 XP.003 XP.005 XP.007 XP.009 XP.011 XP.013 XP.017 XP.053 XP.057 XP.059 005 006 007 008 009 010 011 033 035 037 045 053 057 059 061 063 065 089 091 093 103 105 106 111 112 116 118 119
4.6 26 XP.051 XP.055 003 004 005 006 007 010 012 013 017 019 021 023 025 027 029 031 033 035 037 039 041 042 043 044
Chapter 5: Exponential and Logarithmic Functions
5.1 42 XP.039.alt XP.sup.01 XP.sup.02 004 005 006 008 011 012 013 014 015 016 017 018 019 020 021 022 027 029 031 033 035 037 039 041 045 053 056 057 059 060 061 062 063 065 067 068 069 071 072
5.2 44 XP.073 XP.074 XP.079 XP.081 XP.sup.01 XP.sup.02 XP.sup.03 004 005 007 008 009 010 011 012 013 015 017 018 019 020 021 022 034 039 041 042 043 044 045 047 049 050 053 057 062 063 081 082 083 084 096 098 099
5.3 53 XP.040.alt XP.042.alt XP.046.alt XP.053 XP.057 XP.058 XP.059 XP.061 XP.063 XP.064 XP.077 XP.sup.01 XP.sup.02 XP.sup.03 007 008 009 010 011 013 015 017 019 029 030 031 032 033 034 035 036 037 043 051 065 075 083 087 088 089 090 095 096 099 101 103 106 107 118 119 120 121 122
5.4 63 XP.008 XP.013 XP.015 XP.027 XP.075 XP.077 XP.078 XP.090 XP.sup.01 XP.sup.02 XP.sup.03 006 007 009 011 015 017 019 021 023 025 026 027 028 029 030 031 032 033 034 035 036 037 039 043 045 049 051 057 058 063 064 065 066 067 068 069 070 087 090 092 094 099 101 102 120 121 123 124 131 132 134 135
5.5 52 XP.012.alt XP.039.alt 001 002 004 005 006 007 009 010 011 012 013 015 016 017 019 020 021 023 025 027 029 038 039 040 041 043 045 047 051 052 055 056 059 060 065 066 067 068 069 070 071 072 081 083 085 087 091 092 093 105
5.6 38 XP.sup.010 XP.sup.02 XP.sup.03 XP.sup.04 009 011 012 014 015 016 017 025 029 031 032 035 037 039 041 042 043 045 047 049 051 052 061 063 065 067 069 071 073 075 077 079 081 085
5.7 33 P.044 XP.023 XP.031 XP.032 XP.sup.01 003 004 005 006 007 008 009 010 011 012 013 015 017 019 021 023 031 041 042 045 046 047 048 049 051 063 068 073
5.8 15 XP.023 XP.024 001 002 003 004 005 007 009 011 013 015 020 021 022
5.9 6 XP.005 XP.011 001 003 007 009
Chapter 6: Trigonometric Functions
6.1 75 XP.sup.01 XP.sup.02 XP.sup.03 XP.sup.04 XP.sup.05 XP.sup.06 003 006 007 008 023 025 027 029 031 033 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 061 063 065 067 069 071 073 075 079 081 083 085 087 088 089 090 091 093 095 097 099 101 105 107 109 111 113 114 118 119 120 121 123 124
6.2 42 XP.sup.01 XP.sup.02 XP.sup.03 XP.sup.04 XP.sup.05 XP.sup.06 XP.sup.07 007 008 009 010 012 016 020 026 030 034 042 052 058 065 067 069 071 073 075 077 079 081 083 093 094 099 100 101 102 117 119 121 123 125 130
6.3 42 008 009 010 011 013 015 017 019 021 023 025 043 045 059 061 063 065 067 069 071 073 075 089 091 093 094 095 097 099 101 103 105 107 109 111 113 115 117 132 133 134 135
6.4 49 XP.019 XP.020 XP.025 XP.029 XP.030 XP.sup.01 XP.sup.02 XP.sup.03 XP.sup.04 XP.sup.05 006 007 008 009 010 013 014 019 020 021 022 023 024 025 026 027 029 030 031 032 033 034 035 036 037 038 043 044 067 069 070 073 075 077 093 102 103 104 105
6.5 14 XP.017 XP.018 XP.019 XP.020 XP.027 006 007 008 009 010 011 012 015 049
6.6 21 XP.009 XP.011 XP.sup.01 001 002 003 004 005 007 008 013 015 016 017 027 030 033 035 036 037 038
Chapter 7: Analytic Trigonometry
7.1 31 XP.011 XP.037 XP.038 XP.041 XP.042 XP.sup.01 XP.sup.02 007 008 009 010 012 013 017 019 021 023 025 026 027 028 029 030 031 032 033 034 035 036 037 075
7.2 36 XP.sup.010 004 005 006 007 008 009 010 011 012 013 015 016 017 019 021 022 023 025 026 027 029 030 031 033 035 037 039 041 043 045 047 049 051 053 085
7.3 9 003 004 005 006 007 105 106 107 108
7.4 38 XP.032.alt XP.sup.01 XP.sup.02 XP.sup.03 XP.sup.04 004 005 006 007 008 009 011 013 015 017 019 021 023 025 027 029 071 072 073 074 075 076 077 078 080 081 082 083 084 085 086 087 088
7.5 33 XP.007ab XP.009ab XP.011ab XP.sup.01 XP.sup.02 001 002 003 004 005 007 009 011 013 015 017 019 021 023 027 069 071 073 075 077 079 083 087 088 089 090 098 099
7.6 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 037
7.7 32 XP.sup.01 XP.sup.02 XP.sup.03 007 008 009 011 012 020 021 025 031 032 033 034 035 036 038 041 042 043 044 045 046 047 048 067 068 070 071 072 075
7.8 28 XP.045 XP.047 XP.049 005 007 009 011 013 015 017 019 021 023 025 027 029 030 035 037 039 041 043 045 053 055 057 065 068
Chapter 8: Applications of Trigonometric Functions
8.1 32 XP.006 XP.054 XP.sup.01 XP.sup.02 XP.sup.03 XP.sup.04 006 007 008 029 031 033 035 037 039 043 045 046 049 051 053 054 056 057 058 061 067 069 071 076 081 082
8.2 28 XP.026.alt XP.028.alt XP.030.alt XP.sup.01 004 006 007 008 009 023 025 026 027 028 029 030 031 032 033 034 035 036 037 039 042 047 064 065
8.3 27 XP.033 003 004 005 006 007 008 009 011 012 013 014 015 017 018 019 021 030 034 036 037 038 041 049 050 051 052
8.4 19 XP.037 002 003 004 005 007 009 011 013 015 017 019 033 035 038 040 045 054 055
8.5 12 002 003 004 005 006 007 008 013 015 017 019 058
Chapter 9: Polar Coordinates; Vectors
9.1 30 005 006 008 009 010 011 012 013 014 015 016 017 018 039 041 043 045 047 049 051 053 055 057 059 061 063 065 085 086 087
9.2 24 007 008 009 010 011 012 013 015 019 021 029 030 031 032 033 034 035 036 037 043 045 049 053 083
9.3 25 XP.007 005 006 008 009 010 011 013 015 017 019 021 023 025 027 033 035 037 039 041 043 045 047 049 051
9.4 35 001 002 003 004 005 006 015 016 017 018 019 020 021 022 023 024 025 027 029 031 033 035 037 039 049 055 057 059 063 064 067 068 069 074 075
9.5 20 XP.021 XP.035 XP.09 002 003 004 005 006 007 013 015 017 018 019 023 029 031 033 035 050
Chapter 10: Analytic Geometry
10.2 37 006 007 008 009 010 011 012 013 014 015 016 017 018 019 029 037 039 041 043 045 047 049 051 053 055 056 057 058 059 060 061 062 063 065 067 069 073
10.3 29 XP.082 007 008 009 010 011 012 013 014 015 016 017 021 027 035 037 039 041 043 047 055 057 059 061 063 069 071 075 085
10.4 27 XP.065 XP.068 007 008 009 010 011 012 013 014 015 016 017 019 021 023 025 027 035 036 037 038 039 041 043 045 071
10.5 17 005 006 007 008 009 010 011 013 015 017 019 043 045 047 049 051 059
10.6 16 003 004 005 006 007 009 011 025 027 029 031 033 035 037 039 041
10.7 20 002 003 004 005 006 007 009 011 013 015 017 019 021 023 025 049 051 053 055 064
Chapter 11: Systems of Equations and Inequalities
11.1 38 XP.057 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 021 023 025 027 031 033 037 041 043 049 051 053 055 059 061 065 069 073 075 077 083 084
11.2 33 XP.019 XP.024 001 002 003 004 017 018 021 025 027 037 039 043 045 047 049 051 052 055 057 059 061 063 066 069 073 075 077 079 083 089 090
11.3 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 017 019 021 031 033 035 039 041 043 045 047 049 051 053 055
11.4 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 023 027 029 031 035 037 065 067 069 070 071 072
11.5 21 005 006 007 008 009 010 011 012 013 015 017 019 021 023 025 027 029 031 033 035 037
11.6 30 005 007 009 011 013 015 017 019 022 023 025 027 029 031 037 047 049 051 057 061 063 065 069 075 077 079 081 083 085 087
11.7 17 XP.053 XP.054 008 009 010 043 044 045 046 047 048 049 050 051 052 053 054
11.8 18 XP.021 001 002 003 004 005 006 007 008 009 011 013 015 017 019 024 025 032
Chapter 12: Sequences; Induction; The Binomial Theorem
12.1 37 003 004 005 006 007 008 015 017 019 021 023 025 027 029 031 033 035 037 039 041 043 049 051 059 061 063 065 069 071 073 075 077 079 081 082 085 093
12.2 22 XP.043 XP.045 XP.047 001 002 003 005 007 009 011 013 015 017 019 021 023 027 035 053 055 057 062
12.3 45 003 004 006 007 008 009 011 013 015 017 019 021 023 025 027 029 031 033 035 037 039 041 042 043 044 045 046 055 061 063 065 067 069 071 075 079 083 085 087 096 097 099 102 104 106
12.4 1 034
12.5 15 001 005 007 009 011 017 021 029 031 033 035 037 039 041 043
Chapter 13: Counting and Probability
13.1 32 XP.005 XP.006 XP.007 XP.008 XP.009 XP.010 XP.011 XP.012 XP.013 XP.014 XP.015 XP.017 XP.019 XP.021 XP.023 001 002 003 004 009 011 013 014 015 016 017 018 019 020 025 029 033
13.2 30 XP.031 XP.051 003 004 005 006 007 009 011 013 015 017 019 023 025 027 029 031 033 034 035 037 039 041 043 045 047 049 051 066
13.3 36 XP.051 XP.053 001 002 003 004 005 006 007 009 017 019 021 023 024 025 026 027 029 031 033 035 037 039 041 043 045 047 049 057 059 061 063 065 067 071
Chapter 14: A Preview of Calculus: The Limit, Derivative, and Integral of a Function
14 0
Chapter A: Review
A.1 50 001 002 003 004 007 008 023 024 025 026 027 028 029 030 031 032 033 035 038 043 044 045 046 047 048 071 073 076 078 083 085 086 087 091 100 101 103 129 130 131 132 133 134 135 136 137 138 144 146 148
A.2 25 001 002 003 004 007 013 017 018 019 020 025 026 029 031 033 034 036 037 038 039 040 045 047 048 057
A.3 9 X01 001 004 008 009 058 059 067 133
A.4 4 005 007 009 011
A.7 41 004 006 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 037 039 041 043 045 047 049 051 053 055 057 059 061 063 065 073 074 075 076 077 078 079 091 092
A.8 36 X01 X02 X03 X04 X05 002 003 004 005 006 007 009 010 011 013 015 016 017 018 019 021 023 025 027 033 035 039 043 045 047 048 049 057 059 060 061
A.9 25 005 006 011 012 015 023 025 029 031 039 040 041 042 043 044 045 046 047 048 049 050 053 057 060 119
A.10 19 X01 007 011 019 020 021 023 057 059 061 066 075 077 087 090 091 101 102 107
Chapter B: Graphing Utilities
B.1 9 001 003 005 007 010 017 018 019 020
Total 2446