# Precalculus: Functions and Graphs 13th edition

Earl Swokowski and Jeffery Cole
Publisher: Cengage Learning

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$100.00
High School \$35.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Topics from Algebra
• 1.1: Real Numbers (25)
• 1.2: Exponents and Radicals (62)
• 1.3: Algebraic Expressions (108)
• 1.4: Equations (155)
• 1.5: Complex Numbers (35)
• 1.6: Inequalities (80)
• 1: Review Exercises
• 1: Chapter Test

• Chapter 2: Functions and Graphs
• 2.1: Rectangular Coordinate Systems (28)
• 2.2: Graphs of Equations (52)
• 2.3: Lines (48)
• 2.4: Definition of Function (56)
• 2.5: Graphs of Functions (56)
• 2.7: Operations on Functions (45)
• 2: Review Exercises
• 2: Chapter Test

• Chapter 3: Polynomial and Rational Functions
• 3.1: Polynomial Functions of Degree Greater Than 2 (37)
• 3.2: Properties of Division (28)
• 3.3: Zeros of Polynomials (27)
• 3.4: Complex and Rational Zeros of Polynomials (20)
• 3.5: Rational Functions (36)
• 3.6: Variation (25)
• 3: Review Exercises
• 3: Chapter Test

• Chapter 4: Inverse, Exponential, and Logarithmic Functions
• 4.1: Inverse Functions (38)
• 4.2: Exponential Functions (44)
• 4.3: The Natural Exponential Function (37)
• 4.4: Logarithmic Functions (47)
• 4.5: Properties of Logarithms (40)
• 4.6: Exponential and Logarithmic Equations (45)
• 4: Review Exercises
• 4: Chapter Test

• Chapter 5: The Trigonometric Functions
• 5.1: Angles (51)
• 5.2: Trigonometric Functions of Angles (52)
• 5.3: Trigonometric Functions of Real Numbers (43)
• 5.4: Values of the Trigonometric Functions (35)
• 5.5: Trigonometric Graphs (38)
• 5.6: Additional Trigonometric Graphs (33)
• 5.7: Applied Problems (52)
• 5: Review Exercises
• 5: Chapter Test

• Chapter 6: Analytic Trigonometry
• 6.1: Verifying Trigonometric Identities (24)
• 6.2: Trigonometric Equations (52)
• 6.3: The Addition and Subtraction Formulas (34)
• 6.4: Multiple-Angle Formulas (28)
• 6.5: Product-to-Sum and Sum-to-Product Formulas (23)
• 6.6: The Inverse Trigonometric Functions (40)
• 6: Review Exercises
• 6: Chapter Test

• Chapter 7: Applications of Trigonometry
• 7.1: The Law of Sines (24)
• 7.2: The Law of Cosines (30)
• 7.3: Vectors (46)
• 7.4: The Dot Product (27)
• 7.5: Trigonometric Form for Complex Numbers (34)
• 7.6: De Moivre's Theorem and nth Roots of Complex Numbers (21)
• 7: Review Exercises
• 7: Chapter Test

• Chapter 8: Systems of Equations and Inequalities
• 8.1: Systems of Equations (33)
• 8.2: Systems of Linear Equations in Two Variables (34)
• 8.3: Systems of Inequalities (27)
• 8.4: Linear Programming (21)
• 8.5: Systems of Linear Equations in More Than Two Variables (24)
• 8.6: The Algebra of Matrices (22)
• 8.7: The Inverse of a Matrix (20)
• 8.8: Determinants (22)
• 8.9: Properties of Determinants (19)
• 8.10: Partial Fractions (20)
• 8: Review Exercises
• 8: Chapter Test

• Chapter 9: Sequences, Series, and Probability
• 9.1: Infinite Sequences and Summation Notation (30)
• 9.2: Arithmetic Sequences (31)
• 9.3: Geometric Sequences (28)
• 9.4: Mathematical Induction (18)
• 9.5: The Binomial Theorem (26)
• 9.6: Permutations (24)
• 9.7: Distinguishable Permutations and Combinations (22)
• 9.8: Probability (25)
• 9: Review Exercises
• 9: Chapter Test

• Chapter 10: Topics from Analytic Geometry
• 10.1: Parabolas (36)
• 10.2: Ellipses (33)
• 10.3: Hyperbolas (35)
• 10.4: Plane Curves and Parametric Equations (24)
• 10.5: Polar Coordinates (51)
• 10.6: Polar Equations of Conics (26)
• 10: Review Exercises
• 10: Chapter Test

• Chapter 11: Limits of Functions
• 11.1: Introduction to Limits (36)
• 11.2: Definition of Limit (26)
• 11.3: Techniques for Finding Limits (49)
• 11.4: Limits Involving Infinity (35)
• 11: Review Exercises
• 11: Chapter Test

Precalculus: Functions and Graphs, 13th Edition, by Earl Swokowski and Jeffery Cole, retains the features that have made it so popular: clear exposition and diverse, applications-rich examples and exercises. The excellent, time-tested problems have been widely praised for their consistency and appropriate level of difficulty for precalculus students. Mathematically sound, Precalculus: Functions and Graphs effectively prepares students for further courses in mathematics.

The WebAssign enhancement to this textbook, which includes an interactive eBook, is a fully customizable online solution that empowers students to learn, not just do homework. Insightful tools save time and highlight exactly where students are struggling. Students get an engaging experience, instant feedback, and better outcomes. A total win-win!

Features:
• Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
• Master It Tutorials (MI) show how to solve a similar problem in multiple steps by providing direction along with derivation so students understand the concepts and reasoning behind the problem solving.
• Expanded Problem (EP) questions are expanded versions of existing questions that include intermediary steps to guide the student to the final answer.
• Explore It (EI) modules help students visualize the course's complex topics through hands-on exploration and interactive simulation.
• Course Packs with ready-to-use assignments built by subject matter experts specifically for this textbook are designed to save you time, and can be easily customized to meet your teaching goals.
• A Personal Study Plan lets your students use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.
• Students can Talk to a Tutor for additional assistance through a link at the assignment level.
• Lecture Videos, Lecture Slides, and an online Test Bank are available as a textbook resources.
Use the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
MI - Master It Tutorial
MI.SA - Stand Alone Master It
EP - Expanded Problem
EI - Explore It
XP - Extra Problem

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Topics from Algebra
1.1 25 001 002 005 007 008 009 012 014 015 019 023 025 027 031 033 037 041 042 043 044 049 051 055 058 061
1.2 62 003 004 005 006 007 008 009 010 012 013 015 016 019 020 023 024 025 027 029 032 036 037 041 042 045 049 051 053 054 055 057 058 059 062 063 064 065 067 068 070 073 075 078 082 083 086 088 089 092 094 095 096 097 098 099 100 101 101.EP 102 501.XP 502.XP 503.XP
1.3 108 002 004 006 009 012 014 015 016 018 019 020 021 023 024 026 028 029 032 033 034 035 037 038 040 041 044 045 049 051 055 056 057 058 059 060 061 062 063 065 066 067 071 073 075 077 080 081 082 084 085 086 089 095 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP 554.XP 555.XP
1.4 155 002 004 005 006 008 010 011 013 014 015 016 017 018 019 020 022 025 026 028 030 031 032 035 039 043 046 048 049 053 054 055 059 061 063 064 065 066 067 070 072 077 078 079 080 081 084 086 088 089 090 092 093 095 098 103 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP 554.XP 555.XP 556.XP 557.XP 558.XP 559.XP 560.XP 561.XP 562.XP 563.XP 564.XP 565.XP 566.XP 567.XP 568.XP 569.XP 570.XP 571.XP 572.XP 573.XP 574.XP 575.XP 576.XP 577.XP 578.XP 579.XP 580.XP 581.XP 582.XP 583.XP 584.XP 585.XP 586.XP 587.XP 588.XP 589.XP 590.XP 591.XP 592.XP 593.XP 594.XP 595.XP 596.XP 597.XP 598.XP 599.XP 600.XP
1.5 35 001 003 004 005 008 009 011 012 013 015 017 018 019 022 023 027 029 030 034 035 036 037 038 039 040 042 045 046 048 050 051 052 053 054 055
1.6 80 001 002 005 007 011 012 014 017 020 022 025 027 028 029 031 035 036 037 038 039 040 041 042 043 044 045 047 050 054 058 059 060 062 063 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
Chapter 2: Functions and Graphs
2.1 28 002 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 019.EP 020 022 024 025 026 027 029 031 032 033 040
2.2 52 EI.001 EI.002 001 004 007 008 009 010 012 014 016 017 019 021 024 027 028 030 033 034 036 037 038 041 042 043 047 048 049 049.EP 050 051 052 054 055 057 061 063 064 067 069 073 074 076 078 080 081 083 086 089 093 095
2.3 48 001 002 005 011 013 014 015 016 019 020 022 023 024 024.EP 027 028 030 032 033 035 036 037 038 039 040 041 042 043 044 047 048 049 050 053 055 056 059 062 063 065 066 068 070 071 074 075 079 083
2.4 56 001 003 005 007 008 010 011 012 013 014 015 016 020 021 022 023 026 029 030 031 032 033 034 037 039 040 043 045 046 048 051 052 053 053.EP 055 056 057 058 059 060 062 064 067 071 073 074 077 078 079 080 082 083 084 087 501.XP 502.XP
2.5 56 EI.001 EI.002 EI.003 EI.004 EI.005 EI.006 EI.007 005 005.EP 006 008 009 009.EP 012 015 016 017 018 020 024 025 027 029 031 033 034 035 036 037 040 041 043 044 045 046 047 048 049 051 052 053 054 055 058 062 064 066 067 068 069 070 071 072 073 083 501.XP
2.6 48 EI.001 EI.002 001 003 006 007 009 010 011 012 013 014 016 017 018 019 019.EP 020 021 022 023 024 026 028 029 030 032 033 035 037 038 040 042 043 044 045 047 048 049 052 053 054 054.EP 055 057 058 065 501.XP
2.7 45 EI.001 EI.002 EI.003 001 002 004 005 006 007 009 010 013 014 015 016 018 019 021 023 024 025 026 028 028.EP 032 033 034 036 039 040 041 042 044 047 049 050 051 053 054 056 059 060 062 064 066
Chapter 3: Polynomial and Rational Functions
3.1 37 EI.001 EI.002 001 002 003 006 008 015 016 017 019 020 022 023 024 025 027 028 029 030 031 034 035 037 038 039 040 043 044 045 046 047 048 049 053 057 061
3.2 28 001 002 004 005 008 011 013 015 019 023 025 026 029 031 035 037 039 039.EP 043 045 047 049 050 053 055 059 060 501.XP
3.3 27 002 004 005 009 012 014 015 016 018 019 023 025 028 031 033 035 037 039 043 048 051 055 059 061 061.EP 067 071
3.4 20 001 003 005 007 009 011 015 019 021 023 027 031 033 035 041 042 043 044 047 049
3.5 36 EI.001 EI.002 001 002 007 011 013 014 017 020 022 024 026 030 034 035 036 037 039 041 044 046 047 048 050 051 052 052.EP 053 054 055 057 058 059 060 063
3.6 25 001 002 005 006 009 012 013 014 015 016 017 018 019 020 021 024 025 026 028 029 031 033 034 035 037
Chapter 4: Inverse, Exponential, and Logarithmic Functions
4.1 38 003 005 008 009 010 011 015 016 019 021 023 024 025 026 027 028 030 031 032 033 034 037 038 039 041 044 047 047.EP 049 053 055 056 057 058 063 065 067 069
4.2 44 EI.001 EI.002 EI.003 001 002 005 007 010 013 014 017 020 021 024 025 026 031 035 036 039 040 043 044 045 046 047 049 050 051 052 052.EP 053 056 058 061 063 065 069 071 074 075 077 081 083
4.3 37 001 002 003 005 006 007 007.EP 008 009 011 012 015 017 018 020 021 022 023 024 025 026 029 030 031 032 033 034 036 038 039 041 045 050 056 059 062 065
4.4 47 EI.001 001 002 003 004 005 006 008 011 013 015 016 018 022 024 027 028 030 032 032.EP 034 036 039 040 044 047 049 050 051 052 054 055 059 061 063 065 069 070 072 073 077 080 082 083 089 501.XP 502.XP
4.5 40 001 003 004 006 007 008 009 010 011 013 014 015 016 017 018 019 022 023 025 026 029 031 031.EP 035 038 039 043 047 049 050 055 057 058 060 061 062 063 064 067 071
4.6 45 EI.001 EI.002 002 003 004 005 006 009 009.EP 010 011 011.alt 012 015 016 020 021 024 024.alt 025 025.alt 029 031 035 036 038 045 045.alt 047 049 051 053 054 055 056 060 061 062 065 066 068 069 073 077 081
Chapter 5: The Trigonometric Functions
5.1 51 001 002 003 004 006 008 009 010 011 012 013 014 016 018 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 039 040 041 043 044 045 045.EP 046 050 051 052 054 055 055.EP 058 501.XP 502.XP 503.XP 504.XP 505.XP
5.2 52 001 003 006 007 009 011 012 012.EP 016 017 018 019 020 021 023 024 025 026 027 028 031 035 036 037 039 043 046 050 075 076 077 080 082 083 084 086 087 088 089 090 091 092 094 097 099 102 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
5.3 43 EI.001 EI.002 001 004 005 006 009 012 013 015 016 017 018 019 021 027 028 029 030 031 032 034 035 039 041 042 043 046 047 049 050 051 052 055 059 063 069 071 073 074 077 079 082
5.4 35 001 002 003 004 006 007 008 010 012 013 014 016 017 018 019 021 022 023 024 027 030 033 035 037 038 039 040 041 042 043 045 046 047 048 501.XP
5.5 38 EI.001 001 003 006 007 008 012 016 019 023 024 026 027 028 032 034 036 038 042 044 045 046 047 048 050 050.EP 052 056 057 058 059 060 062 065 071 072 501.XP 502.XP
5.6 33 001 002 004 007 009 010 011 012 015 016 017 018 021 025 029 031 035 039 043 047 051 055 057 059 060 061 065 069 079 083 085 501.XP 502.XP
5.7 52 001 002 004 005 006 008 009 010 011 012 013 014 015 016 018 019 020 025 026 026.EP 027 028 029 031 032 033 034 035 036 037 038 039 041 042 043 044 045 046 047 048 050 051 054 061 062 063 064 065 066 067 069 072
Chapter 6: Analytic Trigonometry
6.1 24 002 003 008 012 017 021 027 033 035 040 042 043 047 051 055 057 058 067 071 075 077 501.XP 502.XP 503.XP
6.2 52 001 002 003 004 005 006 007 009 010 011 013 016 017 019 021 024 027 027.EP 029 031 035 038 039 042 043 045 048 049 051 055 056 057 058 059 061 063 065 068 069 070 071 073 077 080 081 087 091 092 099 103 501.XP 502.XP
6.3 34 001 002 003 005 006 007 010 011 012 014 015 017 018 021 023 024 025 026 030 034 038 039 041 043 045 061 063 066 067 069 070 074 079 501.XP
6.4 28 001 002 005 007 008 008.EP 011 012 015 016 019 031 039 045 047 051 055 060 062 063 065 067 071 501.XP 502.XP 503.XP 504.XP 505.XP
6.5 23 001 002 003 005 007 009 011 013 014 015 017 018 023 024 027 029 031 031.EP 034 035 036 039 043
6.6 40 001 003 004 007 008 009 011 012 013 014 017 019 020 023 024 027 029 031 033 036 039 043 047 051 055 061 062 063 064 067 069 070 072 073 074 075 077 079 087 091
Chapter 7: Applications of Trigonometry
7.1 24 001 003 005 007 010 012 012.EP 015 016 017 018 019 020 021 022 023 024 025 027 028 029 030 501.XP 502.XP
7.2 30 EI.001 EI.002 001 003 007 008 008.EP 009 011 014 017 019 021 022 023 024 025 026 028 029 030 031 032 035 036 037 039 043 046 047
7.3 46 EI.001 EI.002 003 005 007 007.EP 009 009.EP 012 013 014 016 017 029 031 032 033 037 038 039 041 043 045 046 048 049 049.EP 051 053 054 055 057 058 059 061 063 064 065 066 068 072 073 501.XP 502.XP 503.XP 504.XP
7.4 27 001 002 003 005 006 008 009 012 014 017 018 019 020 021 022 024 025 027 029 032 033 041 043 047 049 051 501.XP
7.5 34 001 003 007 009 011 015 017 021 024 025 027 031 033 035 037 040 042 045 047 051 053 056 059 061 063 063.EP 065 066 069 073 075 077 080 501.XP
7.6 21 001 003 004 005 007 009 011 012 013 014 016 017 018 019 020 023 025 025.EP 027 028 501.XP
Chapter 8: Systems of Equations and Inequalities
8.1 33 001 002 003 004 005 007 010 013 015 016 020 021 022 023 025 027 031 032 033 035 038 042 045 047 050 052 054 055 058 065 069 071 074
8.2 34 EI.001 001 002 005 007 009 010 011 015 016 017 018 019 020 023 027 028 029 030 031 033 034 035 037 038 039 040 041 042 045 046 049 051 501.XP
8.3 27 EI.001 001 003 005 008 009 011 015 017 021 024 025 025.EP 027 029 032 034 035 036 037 039 041 043 047 501.XP 502.XP 503.XP
8.4 21 001 004 005 007 011 015 016 017 018 018.EP 019 020 021 022 023 024 025 027 029 030 501.XP
8.5 24 001 003 005 008 011 013 015 015.EP 019 020 021 023 025 027 029 030 035 036 038 039 040 042 043 046
8.6 22 001 002 003 004 007 015 018 019 021 023 027 028 029 031 032 033 034 039 041 045 048 050
8.7 20 001 001.EP 005 006 009 010 011 012 013 014 015 018 019 025 026 027 028 031 035 037
8.8 22 001 003 005 007 009 011 015 017 020 023 027 029 031 035 039 040 043 045 048 049 501.XP 502.XP
8.9 19 005 008 009 011 013 015 017 019 020 021 022 023 025 027 028 037 039 043 045
8.10 20 007 009 010 011 013 015 016 017 018 021 022 023 025 029 030 031 033 036 037 038
Chapter 9: Sequences, Series, and Probability
9.1 30 001 004 007 011 015 019 020 021 024 025 027 031 033 036 037 039 040 043 047 049 051 055 057 058 059 063 067 075 079 501.XP
9.2 31 003 005 008 011 013 016 017 020 023 025 029 031 033 037 037.EP 039 043 047 051 054 056 058 060 061 063 065 066 067 068 069 072
9.3 28 003 003.EP 007 009 012 015 017 019 023 027 031 035 037 039 043 047 051 054 057 059 061 063 066 069 071 075 079 083
9.4 18 004 006 007 009 011 015 021 023 024 027 029 030 031 035 037 041 042 501.XP
9.5 26 001 003 005 009 011 013 017 018 021 021.EP 024 027 029 032 035 037 039 041 045 049 051 055 056 057 501.XP 502.XP
9.6 24 001 003 004 005 007 011 015 017 017.EP 019 021 022 024 027 029 031 032 035 037 041 043 046 501.XP 502.XP
9.7 22 003 005 007 011 013 015 017 019 021 022 023 025 027 031 033 035 039 041 043 501.XP 502.XP 503.XP
9.8 25 001 004 005 008 012 015 017 019 020 024 026 027 029 031 035 039 044 046 049 051 054 058 061 069 071
Chapter 10: Topics from Analytic Geometry
10.1 36 001 003 005 006 008 009 012 013 014 015 016 019 021 023 025 027 029 031 033 034 035 037 039 041 043 047 051 053 055 057 060 061 063 065 067 501.XP
10.2 33 001 002 006 009 010 014 015 016 017 018 019 021 025 029 031 033 035 036 037 041 045 049 053 054 055 060 061 062 063 064 065 069 073
10.3 35 001 003 005 007 011 012 014 017 019 020 021 022 023 025 027 029 033 035 039 040 041 042 043 046 047 049 053 055 059 063 067 069 073 077 080
10.4 24 001 005 007 010 013 017 021 026 029 035 037 038 039 041 043 045 048 049 051 057 058 059 065 066
10.5 51 EI.001 EI.002 001 002 003 004 006 009 010 010.EP 011 012 013 014 018 019 020 022 025 027 031 034 037 041 044 048 053 057 063 065 066 067 071 073 074 075 076 077 080 084 085 086 090 092 093 095 099 101 105 109 111
10.6 26 EI.001 EI.002 EI.003 EI.004 EI.005 001 003 004 005 008 009 012 013 015 019 023 025 026 029 030 033 034 035 036 039 040
Chapter 11: Limits of Functions
11.1 36 002 003 004 006 008 009 010 012 014 015 016 018 020 021 022 024 026 027 028 030 032 033 034 036 038 039 040 042 044 045 046 050 052 054 056 057
11.2 26 002 004 006 008 009 010 012 014 016 018 020 022 024 026 028 030 032 033 034 036 038 039 040 042 044 045
11.3 49 002 003 004 006 008 009 010 012 014 015 016 018 020 021 022 024 026 027 028 030 032 033 034 036 038 039 040 042 044 045 046 048 050 051 052 054 056 057 058 060 062 064 066 068 070 072 074 076 078
11.4 35 002 003 004 006 008 009 010 012 014 015 016 018 020 021 022 024 026 030 032 034 036 038 039 040 042 044 045 046 051 052 054 056 057 058 060
Total 2706