Calculus 1st edition

Textbook Cover

Laura Taalman and Peter Kohn
Publisher: W. H. Freeman

enhanced content

Premium WebAssign

Includes interactive exercises with in-depth tutorials and interactive conceptual resources that allow students to visualize concepts and see cause-and-effect relationships through online simulations.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term $51.00 $85.95
Higher Education Multi-Term $95.95 $125.95
High School $15.50 $45.55

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 0: Functions and Precalculus
    • 0.1: Functions and Graphs (21)
    • 0.2: Operations, Transformations, and Inverses (22)
    • 0.3: Algebraic Functions (8)
    • 0.4: Exponential and Trigonometric Functions (30)
    • 0.5: Logic and Mathematical Thinking (31)
    • 0: Chapter Review (6)
    • 0: Self-Test

  • Chapter 1: Limits
    • 1.1: An Intuitive Introduction to Limits (17)
    • 1.2: Formal Definition of Limit (13)
    • 1.3: Delta-Epsilon Proofs (16)
    • 1.4: Continuity and Its Consequences (19)
    • 1.5: Limit Rules and Calculating Basic Limits (21)
    • 1.6: Infinite Limits and Indeterminate Forms (22)
    • 1: Chapter Review (4)
    • 1: Self-Test

  • Chapter 2: Derivatives
    • 2.1: An Intuitive Introduction to Derivatives (8)
    • 2.2: Formal Definition of the Derivative (36)
    • 2.3: Rules for Calculating Basic Derivatives (23)
    • 2.4: The Chain Rule and Implicit Differentiation (16)
    • 2.5: Derivatives of Exponential and Logarithmic Functions (10)
    • 2.6: Derivatives of Trigonometric and Hyperbolic Functions (11)
    • 2: Chapter Review (1)
    • 2: Self-Test

  • Chapter 3: Applications of the Derivative
    • 3.1: The Mean Value Theorem (10)
    • 3.2: The First Derivative and Curve Sketching (7)
    • 3.3: The Second Derivative and Curve Sketching (14)
    • 3.4: Optimization (11)
    • 3.5: Related Rates (10)
    • 3.6: L'Hôpital's Rule (46)
    • 3: Chapter Review (3)
    • 3: Self-Test

  • Chapter 4: Definite Integrals
    • 4.1: Addition and Accumulation (18)
    • 4.2: Riemann Sums (11)
    • 4.3: Definite Integrals (21)
    • 4.4: Indefinite Integrals (39)
    • 4.5: The Fundamental Theorem of Calculus (21)
    • 4.6: Areas and Average Values (20)
    • 4.7: Functions Defined by Integrals (8)
    • 4: Chapter Review (9)
    • 4: Self-Test

  • Chapter 5: Techniques of Integration
    • 5.1: Integration by Substitution (21)
    • 5.2: Integration by Parts (22)
    • 5.3: Partial Fractions and Other Algebraic Techniques (14)
    • 5.4: Trigonometric Integrals (20)
    • 5.5: Trigonometric Substitution (13)
    • 5.6: Improper Integrals (16)
    • 5.7: Numerical Integration (7)
    • 5: Chapter Review (9)
    • 5: Self-Test

  • Chapter 6: Applications of Integration
    • 6.1: Volumes by Slicing (19)
    • 6.2: Volumes by Shells (20)
    • 6.3: Arc Length and Surface Area (19)
    • 6.4: Real-World Applications of Integration (17)
    • 6.5: Differential Equations (20)
    • 6: Chapter Review (4)
    • 6: Self-Test

  • Chapter 7: Sequences and Series
    • 7.1: Sequences (17)
    • 7.2: Limits of Sequences (12)
    • 7.3: Series (21)
    • 7.4: Introduction to Convergence Tests (14)
    • 7.5: Comparison Tests (9)
    • 7.6: The Ratio and Root Tests (18)
    • 7.7: Alternating Series (11)
    • 7: Chapter Review
    • 7: Self-Test

  • Chapter 8: Power Series
    • 8.1: Power Series (21)
    • 8.2: Maclaurin Series and Taylor Series (18)
    • 8.3: Convergence of Power Series (14)
    • 8.4: Differentiating and Integrating Power Series (18)
    • 8: Chapter Review (10)
    • 8: Self-Test

  • Chapter 9: Parametric Equations, Polar Coordinates, and Conic Sections
    • 9.1: Parametric Equations (26)
    • 9.2: Polar Coordinates (29)
    • 9.3: Graphing Polar Equations
    • 9.4: Computing Arc Length and Area with Polar Functions (15)
    • 9.5: Conic Sections (21)
    • 9: Chapter Review (2)
    • 9: Self-Test

  • Chapter 10: Vectors
    • 10.1: Cartesian Coordinates (19)
    • 10.2: Vectors (31)
    • 10.3: Dot Product (22)
    • 10.4: Cross Product (15)
    • 10.5: Lines in Three-Dimensional Space (28)
    • 10.6: Planes (17)
    • 10: Chapter Review
    • 10: Self-Test

  • Chapter 11: Vector Functions
    • 11.1: Vector-valued Functions (8)
    • 11.2: The Calculus of Vector Functions (26)
    • 11.3: Unit Tangent and Unit Normal Vectors (13)
    • 11.4: Arc Length Parametrizations and Curvature (15)
    • 11.5: Motion (6)
    • 11: Chapter Review
    • 11: Self-Test

  • Chapter 12: Multivariable Functions
    • 12.1: Functions of Two and Three Variables (8)
    • 12.2: Open Sets, Closed Sets, Limits, and Continuity (12)
    • 12.3: Partial Derivatives (23)
    • 12.4: Directional Derivatives and Differentiability (22)
    • 12.5: The Chain Rule and the Gradient (16)
    • 12.6: Extreme Values (11)
    • 12.7: Lagrange Multipliers (10)
    • 12: Chapter Review
    • 12: Self-Test

  • Chapter 13: Double and Triple Integrals
    • 13.1: Double Integrals over Rectangular Regions (18)
    • 13.2: Double Integrals over General Regions (13)
    • 13.3: Double Integrals using Polar Coordinates (12)
    • 13.4: Applications of Double Integrals (14)
    • 13.5: Triple Integrals (10)
    • 13.6: Integration using Cylindrical and Spherical Coordinates (10)
    • 13.7: Jacobians and Change of Variables (6)
    • 13: Chapter Review
    • 13: Self-Test

  • Chapter 14: Vector Analysis
    • 14.1: Vector Fields (8)
    • 14.2: Line Integrals (14)
    • 14.3: Surfaces and Surface Integrals (11)
    • 14.4: Green's Theorem (14)
    • 14.5: Stokes' Theorem (10)
    • 14.6: The Divergence Theorem (13)
    • 14: Chapter Review
    • 14: Self-Test

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
Tutorial - Tutorial Question
XP - Extra Problem


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 0: Functions and Precalculus
0.R 6 016 017 018 044 501.XP 502.XP
0.1 21 001 006 007 027 028 029 031 032 033 036 038 039 040 041 042 049 073 075 076 077 078
0.2 22 001 024.Tutorial 030 031 032 033 034 035 067 069 071 072 073 074 075 076 078 079 080 084 501.XP 502.XP
0.3 8 001 028 029 031 035 036 037 042
0.4 30 001 010 027 029 032 034 036 037 038 039 040 041 042 043 044 048 049 050 051 053 058 061 063 083 084 501.XP 502.XP 503.XP 504.XP 505.XP
0.5 31 001 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046
Chapter 1: Limits
1.R 4 012 024 025 032
1.1 17 001 015 039 040 043 044 045 046 047 048 073 074 075 501.XP 502.XP.Tutorial 503.XP 504.XP
1.2 13 001 004 007 008 009 010 011 015 019 022 023 024 066
1.3 16 001 023 024 026 028 032 033 036 042 043 047 053 061 063 065 066
1.4 19 001 007 008 009 010 011 012 024 035 036 040 041 042 052 053 054 058 067 072
1.5 21 001 013 016 017 025 026 027 028 030 041 042 044 051 063 065 068 071 074 079 083 501.XP
1.6 22 007 008 009 010 023 036 037 038 046 048 050 054 056 060 062 066 068 074 076 501.XP 502.XP 503.XP
Chapter 2: Derivatives
2.R 1 501.XP
2.1 8 035 036 037 038 039 043 044 055
2.2 36 001 023 024 025 026 028 029 030 031 032 035 036 040 041 043 044 047 048 050 055 059 060 061 062 071 072 073 074 075 081 082 083 084 085 086 088
2.3 23 012 022 029 030 031 032 033 034 035 036 037 038 039 040 041 042 046 060 071 072 075 076 081
2.4 16 021 022 024 026 031 034 035 036 044 063 064 065 066 069 070 071
2.5 10 017 018 019 020 021 023 026 031 034 048
2.6 11 017 018 020 023 030 035 036 053 057 072 073
Chapter 3: Applications of the Derivative
3.R 3 001 010 014
3.1 10 001 024 027 028 033 040 041 047 054 057
3.2 7 027.Tutorial 028.Tutorial 029 031 039 040 044
3.3 14 029 030 032 034 041 042 043 044 045 047 048 083 084 086
3.4 11 011 017 025 027 028 029 030 031 032 034 060
3.5 10 021 022 024 037 038 039 042 043 052 053
3.6 46 015 016 018 020 021 023 024 026 028 029 031 032 033 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 063 065 066 069 071 072
Chapter 4: Definite Integrals
4.R 9 005 017 018 020 028 029 030 032 033
4.1 18 029 030 031 032 034 035 036 037 038 039 040 044 045 047 048 050 051 052
4.2 11 027 029 030 032 033 039 040 041 042 043 044
4.3 21 021 022 023 024.Tutorial 025 027 029 030 031 034 037 038 041 042 047 048 049 050 051 052 501.XP
4.4 39 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 057 059 060 061 062
4.5 21 019 020 021 022 023 025 029 033 034 035 039 040 041 044 045 046 048 057 059 060.Tutorial 063
4.6 20 028 030 031 034 036 037 041 042 043 045 047 056 057 058 061 063 064 068 069 071
4.7 8 028 030 035 036 042 045 050 053
Chapter 5: Techniques of Integration
5.R 9 006 007 008 012.Tutorial 014 015 020 021 044
5.1 21 021 022 023 025 030 032 041 042 043 051 053 054 058 059 060 066 071 080 084 501.XP 502.XP
5.2 22 027 030 032 035 037 039 044 046 047 048 052 053 055 056 057 060 061 063 070 071 075 501.XP
5.3 14 017 018 021 027 029.Tutorial 030 032 033 034 035 036 037 038 039
5.4 20 021 023 026 034 035 036 037 039 044 045 046 048 050 051 060 067 069 071.Tutorial 072 076
5.5 13 043 044 046 047 053 054 055 056 058 061 062 069 071
5.6 16 021 022 023 024 033 035 037 040.Tutorial 042 045 047 049 052 055 058 061
5.7 7 023 025 029 030 033 035 037
Chapter 6: Applications of Integration
6.R 4 009b.Tutorial 010 019 501.XP
6.1 19 027 028 031 035 036 038 040 041 042 043 044 047 048 049 050 051 052 053 054
6.2 20 029 030 031 032 033 034 035 036 037 038 039 040 041 043 044 050 053 057 061 501.XP
6.3 19 021 022 027 028 031 032 033 037 038 039 040 041 043.Tutorial 044 063 064 066 067 068 071
6.4 17 019 020 023 042 043 044 045 046 049 050 052 053 056 059 065 066 067
6.5 20 019 020 021 022 023 024 029 030 032 033 034 035 036 037 041 042 045 049 050 051
Chapter 7: Sequences and Series
7.1 17 027 028 029 032 035 043 044 045 046 047 048 049 050 053 063 071 075
7.2 12 023 024 029 030 033 036 039 042 049 050 056 058
7.3 21 022 024 025 030 032 033 038 041 043 044 045 046 047 049 053 054 055 056 058 059 068
7.4 14 018 019 024 026 027 030 031 032 035 036 040 041 050 501.XP
7.5 9 022 027 029 031 032 035 038 047 048
7.6 18 021 022 023 024 025 026 029 031 033 034 035 036 039 041 046 053 054 057
7.7 11 027 030 032 033 035 044 048 049 050 051 059
Chapter 8: Power Series
8.R 10 001 012 015 016 017 018 019 020 021 022
8.1 21 022 023 024 025 026 027 028 029 030 031 032 034 036 039 040 041 046 049 052 056 057
8.2 18 021 022 023 025 026 028 029 031 032 033 035 041 042 043 045 047 050 051
8.3 14 017 020 021 022 023 025 026 037 038 040 041 051 052 061
8.4 18 025 026 028 029 031 033 036a 037a 038a 039a 040a 043 045 049 053 055 059 501.XP
Chapter 9: Parametric Equations, Polar Coordinates, and Conic Sections
9.R 2 010 501.XP.Tutorial
9.1 26 017 018 021 025 026 029 034 037 041 042 043 045 046 047 049 050 051 053 055 056 057 058 059 060 065 501.XP
9.2 29 017 019 020 021 022 023 024 025 026 027 028 029 030 031 033 034 035 036 037 038 039 050 052 053 054 056 057 059 501.XP
9.4 15 017 018 023 026 027 029 031 032 033 034 036 038 039 040 043
9.5 21 018 019 020 021 022 023 024 025 028 029 033 034 035 036 037 038 039 040 041 042 043
Chapter 10: Vectors
10.1 19 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039
10.2 31 023 024 025 026 027 028 029 030 031 032 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 054 501.XP
10.3 22 022 023 024 025 026 027 028 029 031 032 033 034 037 043 044 045 046 049 050 051 501.XP 502.XP
10.4 15 022 023 024 026 032 033 034 035 036 037 038 039 040 041 501.XP
10.5 28 013 014 015 017a 018b 023b 024b 025b 027b 028b 029b 030b 031b 033b 034b 036 037 038 039 041 042 043 044 045 046 047 048 049
10.6 17 021 022 023 024 025 026 028 029 030 035 036 037 038 039 048 049 055
Chapter 11: Vector Functions
11.1 8 035 036 040 042 043 045 047 048
11.2 26 022 023 025 027 028 029 030 031 032 033 034 035 036 037 038 039 041 043 045 046 048 050 051 053 501.XP 502.XP.Tutorial
11.3 13 023 024 026 027 028 031 033 034 036 038 039 041 042
11.4 15 022 023 024 025 027 031 032 034 035 036 037 039 042 050 056
11.5 6 017 019 022 032 501.XP 502.XP
Chapter 12: Multivariable Functions
12.1 8 022 023 024 027 028 032 035 036
12.2 12 033 034 035 036 037 038 039 041 042 043 045 046
12.3 23 023 024 025 027 028 029 031 032 033 034 035 036 043 044 047 048 049 050 059 060 062 064 066
12.4 22 021 022 023 024 027 028 029 030 031 032 035 036 038 056 057 058 059 062 063 064 065 066
12.5 16 021 022 023 024 027 028 035 036 037 038 039 044 045 050 051 052
12.6 11 021 023 027 028 029 030 037 040 047 501.XP 502.XP
12.7 10 024.Tutorial 026 027 028 029 031 033 037 040 043
Chapter 13: Double and Triple Integrals
13.1 18 023 029 033 034 035 036 037 038 039 040 047 049 051 052 059 063 501.XP 502.XP
13.2 13 032 034 036 039 041 042 044 045 048 052 058 061 501.XP.Tutorial
13.3 12 029 030 035 036 039 041 043 047 051 055 058 059
13.4 14 025 026 028 032 033 035 039 042 046 049 053 056 057 058
13.5 10 025 026 028 032 033 042 058 060 501.XP 502.XP
13.6 10 024 025 026 027 028 029 048 049 052 053
13.7 6 028 039 040 041 042 050
Chapter 14: Vector Analysis
14.1 8 017 019 021 036 039 042 044 046
14.2 14 021 023 024 025 029 030 031 034 038 039 045 050 052 053
14.3 11 021 024 025 031 033 038 042 043 052 501.XP 502.XP
14.4 14 017 019 020 022 026 027 028 029 030 032 036 038 044 045
14.5 10 020 021 023 024 026 027 031 032 037 038
14.6 13 021 022 023 025 026 027 029 032 033 037 038 042 043
Total 1535 (1)