Applied Calculus for the Managerial, Life, and Social Sciences 7th edition

Textbook Cover

Soo T. Tan
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term N/A
High School N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Preliminaries
    • 1.1: Precalculus Review I (32)
    • 1.2: Precalculus Review II (30)
    • 1.3: The Cartesian Coordinate System (30)
    • 1.4: Straight Lines (31)
    • 1: Review Exercises (22)

  • Chapter 2: Functions, Limits, and the Derivative
    • 2.1: Functions and Their Graphs (31)
    • 2.2: The Algebra of Functions (29)
    • 2.3: Functions and Mathematical Models (30)
    • 2.4: Limits (30)
    • 2.5: One-Sided Limits and Continuity (30)
    • 2.6: The Derivative (29)
    • 2: Review Exercises (21)

  • Chapter 3: Differentiation
    • 3.1: Basic Rules of Differentiation (30)
    • 3.2: The Product and Quotient Rules (30)
    • 3.3: The Chain Rule (30)
    • 3.4: Marginal Functions in Economics (30)
    • 3.5: Higher-Order Derivatives (30)
    • 3.6: Implicit Differentiation and Related Rates (30)
    • 3.7: Differentials (30)
    • 3: Review Exercises (21)

  • Chapter 4: Applications of the Derivative
    • 4.1: Applications of the First Derivative (30)
    • 4.2: Applications of the Second Derivative (30)
    • 4.3: Curve Sketching (29)
    • 4.4: Optimization I (30)
    • 4.5: Optimization II (30)
    • 4: Review Exercises (21)

  • Chapter 5: Exponential and Logarithmic Functions
    • 5.1: Exponential Functions (30)
    • 5.2: Logarithmic Functions (30)
    • 5.3: Compound Interest (30)
    • 5.4: Differentiation of Exponential Functions (30)
    • 5.5: Differentiation of Logarithmic Functions (31)
    • 5.6: Exponential Functions as Mathematical Models (30)
    • 5: Review Exercises (10)

  • Chapter 6: Integration
    • 6.1: Antiderivatives and the Rules of Integration (29)
    • 6.2: Integration by Substitution (29)
    • 6.3: Area and the Definite Integral (18)
    • 6.4: The Fundamental Theorem of Calculus (30)
    • 6.5: Evaluating Definite Integrals (30)
    • 6.6: Area between Two Curves (29)
    • 6.7: Applications of the Definite Integral to Business and Economics (15)
    • 6.8: Volumes of Solids of Revolution (28)
    • 6: Review Exercises (20)

  • Chapter 7: Additional Topics in Integration
    • 7.1: Integration by Parts (29)
    • 7.2: Integration Using Tables of Integrals (31)
    • 7.3: Numerical Integration (30)
    • 7.4: Improper Integrals (30)
    • 7: Review Exercises (19)

  • Chapter 8: Calculus of Several Variables
    • 8.1: Functions of Several Variables (28)
    • 8.2: Partial Derivatives (30)
    • 8.3: Maxima and Minima of Funtions of Several Variables (27)
    • 8.4: The Method of Least Squares (27)
    • 8.5: Constrained Maxima and Minima and the Method of Lagrange Multipliers (27)
    • 8.6: Total Differentials (28)
    • 8.7: Double Integrals (27)
    • 8.8: Applications of Double Integrals (29)
    • 8: Review Exercises (19)

  • Chapter 9: Differential Equations
    • 9.1: Differential Equations (16)
    • 9.2: Separation of Variables (30)
    • 9.3: Applications of Separable Differential Equations (20)
    • 9.4: Approximate Solutions of Differential Equations (16)
    • 9: Review Exercises (23)

  • Chapter 10: Probability and Calculus
    • 10.1: Probability Distributions of Random Variables (43)
    • 10.2: Expected Value and Standard Deviation (29)
    • 10.3: Normal Distributions (30)
    • 10: Review Exercises (21)

  • Chapter 11: Taylor Polynomials and Infinite Series
    • 11.1: Taylor Polynomials (30)
    • 11.2: Infinite Sequences (28)
    • 11.3: Infinite Series (29)
    • 11.4: Series with Positive Terms (30)
    • 11.5: Power Series and Taylor Series (30)
    • 11.6: More on Taylor Series (30)
    • 11.7: Newton's Method (30)
    • 11: Review Exercises (30)

  • Chapter 12: Trigonometric Functions
    • 12.1: Measurement of Angles (22)
    • 12.2: The Trigonometric Functions (22)
    • 12.3: Differentiation of Trigonometric Functions (30)
    • 12.4: Integration of Trigonometric Functions (30)
    • 12: Review Exercises (30)

Enhanced WebAssign from Brooks/Cole

The content for this textbook is part of the Enhanced WebAssign series from Brooks/Cole. An Enhanced WebAssign access card is required for this book. This special access card can be packaged with a new textbook. Students have access to these materials for as long as they are enrolled in a WebAssign course using this textbook. The access card can also be purchased online or at the bookstore by students who need access.

Please discuss how to order your textbook packaged with WebAssign with your Cengage Learning representative or WebAssign.

When you use WebAssign with the pedagogy and content found in this textbook, you have access to the best-in-breed solution to your homework and assessment needs. Enhanced WebAssign works with your students; providing them the content and tutorial help they need when they need it, as they are doing their homework!

  1. Homework Problems - questions from your textbook
    Choose from over 2100 questions including randomized numerical and algebraic with a math palette for easy entry of mathematical expressions, automatically graded graphs, fill-in-the-blank, multiple choice, multi-select, and multi-step. Questions are text-specific, match the end-of-section exercises, and never deviate from the concepts covered in that section. Graphics and figures are taken directly from the text to enhance the questions. Important pedagogical features like vocabulary are also featured in the homework questions.

  2. Skillbuilder Videos - portable office hours
    Students can see and hear additional instruction through the Watch It link from each homework question. The examples worked in each 2-5 minute video correlate to the problems in the homework questions. Students can pause, rewind and fast forward these videos to ensure they get the most out of these problem specific video solutions.

  3. Tutorials - step by step instructions
    Students can see step by step how to do a similar problem with the Practice It and Master It links. Practice It links will typically include either interactive text examples that guide students through the process needed to better understand a concept. Master It links step students through additional concept mastery tutorials.

  4. Textbook Links - portable textbook
    Students will also find helpful Read It links in each question that go directly to the appropriate section of their textbook. Whenever they leave their book behind, they can always refer to the needed sections from within their homework assignment.

  5. Online Tutor - individual help
    Students can chat in real time with experienced math tutors provided by SMARTHINKING. Each question has a link to an online tutor. Students are entitled to one hour of access to SMARTHINKINGa $35 valuefor no charge!

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
R - Review


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Preliminaries
1.R 22 002 004 006 008 010 012 014 016 018 020 022 024 026 030 032 034 036 038 040 042 044 052
1.1 32 002 012 016 020 022 026 030 034 036 038 042 044 048 052 056 060 062 064 068 072 076 080 084 088 092 094 096 100 104 108 112 116
1.2 30 002 004 006 008 012 014 016 018 020 024 028 032 036 040 044 050 056 060 064 068 072 076 080 084 088 092 096 098 100 102
1.3 30 001 002 004 006 007 008 009 010 011 012 013 014 015 016 018 019 020 022 024 026 028 030 032 034 036 038 040 042 044 046
1.4 31 004 008 012 014 016 018 020 022 024 026 028 030 032 036 040 044 046 048 050 052 054 058 064 066 068 070 072 074 076 078 082
Chapter 2: Functions, Limits, and the Derivative
2.R 21 002 006 008 010 012 014 016 018 022 024 026 030 032 034 036 038 040 042 044 046 048
2.1 31 002 004 006 008 010 014 015 016 018 020 022 024 026 028 032 034 042 046 052 054 058 060 064 066 068 072 074 076 082 084 086
2.2 29 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 044 046 048 050 052 056 058 062 064 066 070 072
2.3 30 002 004 006 008 010 014 016 020 022 024 028 032 036 042 044 046 050 054 058 060 062 064 068 070 072 076 078 080 082 084
2.4 30 002 004 008 010 014 016 018 020 024 028 030 032 036 042 044 050 052 054 056 062 064 066 070 074 076 078 084 086 088 090
2.5 30 002 006 008 012 016 020 022 024 026 030 032 036 040 044 046 052 056 058 060 062 064 068 070 072 074 076 082 086 088 090
2.6 29 002 004 006 008 010 012 014 015 016 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058
Chapter 3: Differentiation
3.R 21 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 044
3.1 30 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 042 044 046 050 054 056 058 062 066 070 074 076
3.2 30 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 060 062
3.3 30 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 040 046 048 050 054 056 062 066 070 074 076 086
3.4 30 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 036
3.5 30 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 024 026 028 030 032 036 038 040 042
3.6 30 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 062
3.7 30 002 003 004 005 006 007 008 009 010 011 012 013 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 047 048
Chapter 4: Applications of the Derivative
4.R 21 002 006 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048
4.1 30 002 006 012 014 016 018 020 022 024 026 028 030 048 050 052 054 056 058 060 062 064 066 068 070 072 078 080 090 092 094
4.2 30 004 008 012 016 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 060 064 068 080 082 090 098 100
4.3 29 004 008 012 014 016 018 020 022 024 026 028 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070
4.4 30 002 004 006 008 010 012 014 016 018 020 024 026 028 030 032 036 040 042 044 046 048 050 052 054 056 058 062 064 070 072
4.5 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
Chapter 5: Exponential and Logarithmic Functions
5.R 10 012 014 016 018 020 022 024 026 028 030
5.1 30 001 002 004 006 007 008 010 011 012 013 014 018 019 020 022 024 026 028 030 032 034 036 038 040 042 043 044 045 046 048
5.2 30 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 049 050 052 054 056 058
5.3 30 001 002 004 005 006 008 009 010 012 013 014 016 017 018 020 021 022 024 025 026 028 030 032 034 036 037 038 040 042 046
5.4 30 002 004 006 010 012 014 018 020 022 026 028 030 034 036 038 044 046 048 052 054 056 058 060 064 066 068 070 072 078 080
5.5 31 002 004 006 008 010 012 014 016 018 020 024 026 028 030 032 034 036 038 040 044 046 048 050 052 054 056 058 060 062 068 070
5.6 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
Chapter 6: Integration
6.R 20 001 002 003 004 005 006 007 008 010 011 012 014 016 018 020 022 024 026 028 032
6.1 29 006 010 014 016 020 022 024 028 034 038 042 044 052 054 056 060 064 068 070 072 074 078 082 084 088 090 094 096 098
6.2 29 002 004 006 008 010 012 014 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 051 054 056 058 060 062 064
6.3 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
6.4 30 002 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 020 022 024 026 028 030 032 034 036 038 040 042 046 054
6.5 30 001 002 003 004 005 006 007 008 009 010 011 013 014 015 016 017 018 019 020 022 024 026 028 030 032 034 036 038 040 046
6.6 29 002 004 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 028 030 034 036 038 040 042 044
6.7 15 001 002 003 004 009 010 011 012 013 014 016 017 018 019 020
6.8 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 029
Chapter 7: Additional Topics in Integration
7.R 19 001 002 003 004 005 006 010 012 013 015 016 017 018 019 020 021 022 023 024
7.1 29 001 002 003 004 005 006 007 008 009 010 012 014 016 018 020 022 024 026 028 030 034 036 038 040 042 044 046 048 050
7.2 31 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 024 026 028 029 030 032 034 036 038
7.3 30 001 002 003 004 005 006 007 008 009 011 012 013 015 016 017 018 019 020 021 022 023 024 025 026 027 028 030 032 036 046
7.4 30 001 002 003 004 005 006 007 008 009 010 015 016 017 018 019 020 021 022 023 024 025 026 027 028 030 032 034 036 040 042
Chapter 8: Calculus of Several Variables
8.R 19 002 012 014 016 018 020 022 024 026 028 030 032 034 038 044 046 053 055 057
8.1 28 001 002 003 004 005 006 007 008 009 010 012 014 016 018 026 028 029 030 031 032 033 034 035 037 038 041 042 045
8.2 30 002 004 005 006 008 010 012 014 016 018 020 022 023 024 026 028 030 031 032 034 036 040 042 046 048 050 052 054 056 058
8.3 27 001 002 003 004 005 006 007 008 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 030
8.4 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 025 026 027 028
8.5 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 017 018 019 020 021 022 023 024 025 026 027 028
8.6 28 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017 018 019 020 022 024 026 028 030 032 034 038 040
8.7 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027
8.8 29 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029
Chapter 9: Differential Equations
9.R 23 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
9.1 16 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
9.2 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
9.3 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
9.4 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
Chapter 10: Probability and Calculus
10.R 21 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 025 026
10.1 43 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 035 036 037 038 039 040 042 043 044 045 046 047 048 052 055 056
10.2 29 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029
10.3 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
Chapter 11: Taylor Polynomials and Infinite Series
11.R 30 001 002 003 004 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 030 032 034 036 038
11.1 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 020 022 024 026 028 030 032 034 036 038 040 042
11.2 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 030 032 034 036 038 040 042 044 046
11.3 29 001 002 003 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 024 026 028 030 032 034 036 038 042
11.4 30 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040
11.5 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
11.6 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
11.7 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031
Chapter 12: Trigonometric Functions
12.R 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 023 024 025 026 027 028 030 032 034
12.1 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 023 024 025 026
12.2 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022
12.3 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 020 022 024 026 028 030 034 042 044 046 048 052
12.4 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 024 026 028 030 032 034 036 038 040
Total 2145