Calculus: Early Transcendentals 1st edition

Textbook Cover

Soo T. Tan
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

personal study plan

Personal Study Plan Module

Your students can use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term $47.00 $100.00
Higher Education Multi-Term $65.00 $125.00
High School $21.50 $35.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 0: Preliminaries
    • 0.1: Lines (32)
    • 0.2: Functions and Their Graphs (28)
    • 0.3: The Trigonometric Functions (21)
    • 0.4: Combining Functions (27)
    • 0.5: Graphing Calculators and Computers (23)
    • 0.6: Mathematical Models (21)
    • 0.7: Inverse Functions (23)
    • 0.8: Exponential and Logarithmic Functions (21)
    • 0: Chapter Review (7)

  • Chapter 1: Limits
    • 1.1: An Intuitive Introduction to Limits (22)
    • 1.2: Techniques for Finding Limits (33)
    • 1.3: A Precise Definition of a Limit (18)
    • 1.4: Continuous Functions (24)
    • 1.5: Tangent Lines and Rates of Change (29)
    • 1: Chapter Review

  • Chapter 2: The Derivative
    • 2.1: The Derivative (21)
    • 2.2: Basic Rules of Differentiation (39)
    • 2.3: The Product and Quotient Rules (34)
    • 2.4: The Role of the Derivative in the Real World (20)
    • 2.5: Derivatives of Trigonometric Functions (25)
    • 2.6: The Chain Rule (33)
    • 2.7: Implicit Differentiation (43)
    • 2.8: Derivatives of Logarithmic Functions (43)
    • 2.9: Related Rates (25)
    • 2.10: Differentials and Linear Approximations (30)
    • 2: Chapter Review (6)

  • Chapter 3: Applications of the Derivative
    • 3.1: Extrema of Functions (39)
    • 3.2: The Mean Value Theorem (17)
    • 3.3: Increasing and Decreasing Functions and the First Derivative Test (26)
    • 3.4: Concavity and Inflection Points (27)
    • 3.5: Limits Involving Infinity; Asymptotes (35)
    • 3.6: Curve Sketching (33)
    • 3.7: Optimization Problems (38)
    • 3.8: Indeterminant Forms and l'Hôpital's Rule (40)
    • 3.9: Newton's Method (12)
    • 3: Chapter Review (10)

  • Chapter 4: Integration
    • 4.1: Indefinite Integrals (61)
    • 4.2: Integration by Substitution (59)
    • 4.3: Area (26)
    • 4.4: The Definite Integral (20)
    • 4.5: The Fundamental Theorem of Calculus (59)
    • 4.6: Numerical Integration (26)
    • 4: Chapter Review (9)

  • Chapter 5: Applications of the Definite Integral
    • 5.1: Areas Between Curves (24)
    • 5.2: Volumes: Disks, Washers, and Cross Sections (29)
    • 5.3: Volumes Using Cylindrical Shells (20)
    • 5.4: Arc Length and Areas of Surfaces of Revolution (27)
    • 5.5: Work (18)
    • 5.6: Fluid Pressure and Force (17)
    • 5.7: Moments and Center of Mass (19)
    • 5.8: Hyperbolic Functions (23)
    • 5: Chapter Review

  • Chapter 6: Techniques of Integration
    • 6.1: Integration by Parts (42)
    • 6.2: Trigonometric Integrals (23)
    • 6.3: Trigonometric Substitutions (25)
    • 6.4: The Method of Partial Fractions (24)
    • 6.5: Integration Using Tables of Integrals and a CAS; a Summary of Techniques (25)
    • 6.6: Improper Integrals (50)
    • 6: Chapter Review (5)

  • Chapter 7: Differential Equations
    • 7.1: Differential Equations: Separable Equations (26)
    • 7.2: Direction Fields and Euler's Method (18)
    • 7.3: The Logistic Equation (19)
    • 7.4: First-Order Linear Differential Equations (25)
    • 7.5: Predator-Prey Models (1)
    • 7: Chapter Review (1)

  • Chapter 8: Infinite Sequences and Series
    • 8.1: Sequences (31)
    • 8.2: Series (33)
    • 8.3: The Integral Test (24)
    • 8.4: The Comparison Tests (21)
    • 8.5: Alternating Series (22)
    • 8.6: Absolute Convergence; The Ratio and Root Tests (17)
    • 8.7: Power Series (28)
    • 8.8: Taylor and Maclaurin Series (24)
    • 8.9: Approximation by Taylor Polynomials (20)
    • 8: Chapter Review

  • Chapter 9: Conic Sections, Parametric Equations, and Polar Coordinates
    • 9.1: Conic Sections (17)
    • 9.2: Plane Curves and Parametric Equations (18)
    • 9.3: The Calculus of Parametric Equations (25)
    • 9.4: Polar Coordinates (19)
    • 9.5: Areas and Arc Lengths in Polar Coordinates (17)
    • 9.6: Conic Sections in Polar Coordinates (17)
    • 9: Chapter Review

  • Chapter 10: Vectors and the Geometry of Space
    • 10.1: Vectors in the Plane (14)
    • 10.2: Coordinate Systems and Vectors in 3-Space (21)
    • 10.3: The Dot Product (18)
    • 10.4: The Cross Product (15)
    • 10.5: Lines and Planes in Space (20)
    • 10.6: Surfaces in Space (20)
    • 10.7: Cylindrical and Spherical Coordinates (12)
    • 10: Chapter Review

  • Chapter 11: Vector-Valued Functions
    • 11.1: Vector-Valued Functions and Space Curves (12)
    • 11.2: Differentiation and Integration of Vector-Valued Functions (10)
    • 11.3: Arc Length and Curvature (14)
    • 11.4: Velocity and Acceleration (14)
    • 11.5: Tangential and Normal Components of Acceleration (13)
    • 11: Chapter Review

  • Chapter 12: Functions of Several Variables
    • 12.1: Functions of Two or More Variables (12)
    • 12.2: Limits and Continuity (16)
    • 12.3: Partial Derivatives (17)
    • 12.4: Differentials (15)
    • 12.5: The Chain Rule (13)
    • 12.6: Directional Derivatives and Gradient Vectors (13)
    • 12.7: Tangent Planes and Normal Lines (13)
    • 12.8: Extrema of Functions of Two Variables (15)
    • 12.9: Lagrange Multipliers (13)
    • 12: Chapter Review

  • Chapter 13: Multiple Integrals
    • 13.1: Double Integrals (13)
    • 13.2: Iterated Integrals (20)
    • 13.3: Double Integrals in Polar Coordinates (14)
    • 13.4: Applications of Double Integrals (12)
    • 13.5: Surface Area (12)
    • 13.6: Triple Integrals (15)
    • 13.7: Triple Integrals in Cylindrical and Spherical Coordinates (15)
    • 13.8: Change of Variables in Multiple Integrals (13)
    • 13: Chapter Review

  • Chapter 14: Vector Analysis
    • 14.1: Vector Fields (13)
    • 14.2: Divergence and Curl (15)
    • 14.3: Line Integrals (17)
    • 14.4: Independence of Path and Conservative Vector Fields (19)
    • 14.5: Green's Theorem (15)
    • 14.6: Parametric Surfaces (12)
    • 14.7: Surface Integrals (12)
    • 14.8: The Divergence Theorem (13)
    • 14.9: Stokes' Theorem (11)
    • 14: Chapter Review

  • Chapter QP: Quick Prep Topics
    • QP.1 Definition and Representations of Functions (14)
    • QP.2 Working with Representations of Functions (14)
    • QP.3 Function Notation (14)
    • QP.4 Domain and Range of a Function (14)
    • QP.5 Solving Linear Equations (14)
    • QP.6 Linear Functions (17)
    • QP.7 Parabolas (14)
    • QP.8 Factoring Quadratic Equations and Finding x-intercepts of a Quadratic Function (14)
    • QP.9 Polynomials (17)
    • QP.10 More about Factoring Polynomials (14)
    • QP.11 Finding Roots (14)
    • QP.12 Dividing Polynomials (14)
    • QP.13 Rational Functions (17)
    • QP.14 Root Functions (17)
    • QP.15 Rationalizing the Numerator or Denominator (12)
    • QP.16 Exponential Functions (14)
    • QP.17 Logarithmic Functions (17)
    • QP.18 Trigonometric Functions and the Unit Circle (14)
    • QP.19 Graphs of Trigonometric Functions (14)
    • QP.20 Trigonometric Identities (17)
    • QP.21 Special Functions (14)
    • QP.22 Algebraic Combinations of Functions (14)
    • QP.23 Composition of Functions (14)
    • QP.24 Transformations of Functions (14)
    • QP.25 Inverse Functions (17)

QuickPrep

QuickPrep reviews twenty five key precalculus topics to help your students with their readiness for calculus. Assign any of these new QuickPrep modules (or any of the questions from the modules) early in the course, or whenever you think the review is most needed throughout the course. If additional review is needed, assign the new JIT (just-in-time) problems, carefully selected as prerequisite review for each section.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
MI - Master It
QP - QuickPrep


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 0: Preliminaries
0.R 7 005 006 019 073 074 076 077
0.1 32 006 008 010 012 014 016 024 025 028 031 034 037 038 042 045 047 048 052 054 057 062 066 067 073 074 075 076 078 080 081 082 086
0.2 28 002 006 011 012 013 014 016 018 019 021 024 026 027 028 029 030 033 034 036 040 046 047 050 054 060 063 066 070
0.3 21 002 014 017 018 022 028 029 031 032 043 045 048 056 058 059 061 062 063 065 066 067
0.4 27 001 009 012 014 015 015-016.501.XP.MI 015-016.501.XP.MI.SA 018 020 021 025 026 028 030 032 034 037 038 042 046 048.MI 048.MI.SA 052 054 056 060 068
0.5 23 001 002 003 004 006 008 009 010 011 012 013 015 016 018 021 022 024 027 029 030 031 033 034
0.6 21 001 002 003 004 005 006 007 010 011 013 014 015 016 017 018 019 020 021 025 027 029
0.7 23 007 008 011-014.501.XP.MI 011-014.501.XP.MI.SA 012 013 014 016 019 022 025 026 027 029 030 033 038 041 043 050 054 055 057
0.8 21 001 002 005 009 012 018 022 023 026 027 029 030 034 035 041 042 059 061 071 072 078
Chapter QP: Quick Prep Topics
QP.1 14 N.001 N.001.Reading 001 002 003 004 005 006 007 008 009 010 011.MI 012.MI
QP.2 14 N.001 N.001.Reading 001.MI 002.MI 003 004 005.MI 006 007 008.MI 009.MI 010.MI 011.MI 012
QP.3 14 N.001 N.001.Reading 001 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008.MI 009.MI 010.MI 011.MI 012.MI
QP.4 14 N.001 N.001.Reading 001 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008 009 010.MI 011.MI 012.MI
QP.5 14 N.001 N.001.Reading 001 002 003 004.MI 005.MI 006 007.MI 008.MI 009.MI 010.MI 011.MI 012.MI
QP.6 17 N.001 N.001.Reading 001.MI 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008 009 010.MI 011.MI 012.MI 013.MI 014 015
QP.7 14 N.001 N.001.Reading 001 002.MI 003.MI 004 005.MI 006 007 008.MI 009 010 011 012.MI
QP.8 14 N.001 N.001.Reading 001.MI 002 003 004.MI 005.MI 006.MI 007.MI 008 009 010 011 012.MI
QP.9 17 N.001 N.001.Reading 001 002 003 004 005.MI 006.MI 007 008 009.MI 010 011 012 013 014 015
QP.10 14 N.001 N.001.Reading 001 002 003 004.MI 005.MI 006.MI 007.MI 008.MI 009.MI 010 011.MI 012.MI
QP.11 14 N.001 N.001.Reading 001 002.MI 003 004 005 006.MI 007 008 009.MI 010.MI 011 012
QP.12 14 N.001 N.001.Reading 001 002 003 004 005.MI 006.MI 007 008.MI 009.MI 010.MI 011.MI 012.MI
QP.13 17 N.001 N.001.Reading 001 002.MI 003.MI 004.MI 005 006.MI 007 008.MI 009 010.MI 011.MI 012.MI 013.MI 014.MI 015
QP.14 17 N.001 N.001.Reading 001 002 003 004 005 006 007.MI 008 009 010.MI 011 012.MI 013.MI 014 015
QP.15 12 N.001 N.001.Reading 001.MI 002 003.MI 004 005 006 007 008 009.MI 010
QP.16 14 N.001 N.001.Reading 001 002 003 004 005 006 007 008 009 010 011.MI 012
QP.17 17 N.001 N.001.Reading 001.MI 002.MI 003.MI 004 005 006 007 008.MI 009 010.MI 011.MI 012.MI 013.MI 014.MI 015.MI
QP.18 14 N.001 N.001.Reading 001.MI 002 003 004.MI 005 006 007.MI 008 009 010 011 012
QP.19 14 N.001 N.001.Reading 001.MI 002.MI 003.MI 004 005 006 007 008 009 010 011 012
QP.20 17 N.001 N.001.Reading 001 002 003.MI 004.MI 005.MI 006 007 008 009 010 011 012 013 014 015
QP.21 14 N.001 N.001.Reading 001 002 003.MI 004 005 006 007 008 009 010 011 012
QP.22 14 N.001 N.001.Reading 001 002 003.MI 004.MI 005 006 007 008.MI 009 010 011 012
QP.23 14 N.001 N.001.Reading 001.MI 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008 009 010 011 012
QP.24 14 N.001 N.001.Reading 001 002 003 004 005 006 007 008 009 010.MI 011.MI 012
QP.25 17 N.001 N.001.Reading 001 002 003 004 005.MI 006.MI 007.MI 008.MI 009.MI 010.MI 011 012 013 014.MI 015.MI
Chapter 1: Limits
1.1 22 002 004 006 007 010 012.MI 012.MI.SA 014 016 017 018.MI 018.MI.SA 020 021 022 024 026 027 029 030 035 043
1.2 33 002 004 006 008 013 017 018 020 022 026 030 033 036 041 041-076.501.XP.MI 041-076.501.XP.MI.SA 041-076.502.XP.MI 041-076.502.XP.MI.SA 044 046 049 052 054 056.MI 056.MI.SA 061 066 067 068 072 078 082 086
1.3 18 001 002 003 004 005 006 007 009 010 011 014 016 018 019 022 031 032 034
1.4 24 004 006 008 009 010 012 013 021 023 026 027 028 031 034 036 040 046 048 052 059 060 062 071 076
1.5 29 001 002 003 004 006 008 010 011 012 013 014 016 017 018 019 020 021 023 024 025 026 027 028 029 030 032 036 038 040
Chapter 2: The Derivative
2.R 6 009 011 014 028 105 108
2.1 21 004 007 008 009 012 014 016 024 028 030 032 033 034 037 040 043 045 048 054 057 058
2.2 39 001 001-032.501.XP.MI 001-032.501.XP.MI.SA 002 004 005 006 008 010 011 012 013 018 019 020 022 023 024 026 028 029 031 032 034 035-038.501.XP.MI 035-038.501.XP.MI.SA 036 038 040 043 046 059 060 061 062 063 068 071 076
2.3 34 009 010 012 014 015-030.501.XP.MI 015-030.501.XP.MI.SA 016 018 023 025 026 027 028 029 031 032 033 034 035 036 038 046 047 051-054.501.XP.MI 051-054.501.XP.MI.SA 052 054 055 058 063 064 066 069 072
2.4 20 001 002 004 006 007 010 012 016 018 022 025 027 028 030 033 035 036 037 038 039
2.5 25 001-022.501.XP.MI 001-022.501.XP.MI.SA 001-022.502.XP.MI 001-022.502.XP.MI.SA 001-022.503.XP.MI 001-022.503.XP.MI.SA 002 004 006 008 009 010 012 014 015 016 017 019 021 024 025 028 035 038 046
2.6 33 006 007-064.501.XP.MI 007-064.501.XP.MI.SA 008 009 013 016 020 024 026 032 033 036 044 047 057 059 063 064 066 068 069 077 079 085 090 091 092 094 098 101 104 111
2.7 43 001 001-022.501.XP.MI 001-022.501.XP.MI.SA 001-022.502.XP.MI 001-022.502.XP.MI.SA 001-022.503.XP.MI 001-022.503.XP.MI.SA 002 004 006 009 014 016 019 026 027 030 040 042 043 044 045 046 047 049-072.501.XP.MI 049-072.501.XP.MI.SA 050 052 056 060 062 063 064 068 070 075 076 078 082 083 085 087 088
2.8 43 001 001-026.501.XP.MI 001-026.501.XP.MI.SA 001-026.502.XP.MI 001-026.502.XP.MI.SA 001-026.503.XP.MI 001-026.503.XP.MI.SA 001-026.504.XP.MI 001-026.504.XP.MI.SA 001-026.505.XP.MI 001-026.505.XP.MI.SA 002 003 004 005 010 011 014 016 017 020 022 023 025 027 027-028.501.XP.MI 027-028.501.XP.MI.SA 027-028.502.XP.MI 027-028.502.XP.MI.SA 028 029-040.501.XP.MI 029-040.501.XP.MI.SA 029-040.502.XP.MI 029-040.502.XP.MI.SA 029-040.503.XP.MI 029-040.503.XP.MI.SA 032 036 037 041-044.501.XP.MI 041-044.501.XP.MI.SA 043 047
2.9 25 002 004 005 007 008 011 013 014 017 018 019 021 022 025 026 027 028 031 032 033 035 036 037 040 042
2.10 30 002 004 006 008 009 010 012 013 014 016 019-022.501.XP.MI 019-022.501.XP.MI.SA 021 022 026 028 029 030 031 034 035 036 037 039 041 043 044 046 047 048
Chapter 3: Applications of the Derivative
3.R 10 004 005 023 024 028 036 048 049 052 092
3.1 39 001 003 004 006 016 017 024 025-040.501.XP.MI 025-040.501.XP.MI.SA 025-040.502.XP.MI 025-040.502.XP.MI.SA 025-040.503.XP.MI 025-040.503.XP.MI.SA 025-040.504.XP.MI 025-040.504.XP.MI.SA 028 030 032 034 041 041-060.501.XP.MI 041-060.501.XP.MI.SA 041-060.502.XP.MI 041-060.502.XP.MI.SA 041-060.503.XP.MI 041-060.503.XP.MI.SA 041-060.504.XP.MI 041-060.504.XP.MI.SA 043 048 049 050 052 054 061 063 067 076 078
3.2 17 002 003 005 007 009 011 014 015 019 020 023 039 041 043 044 045 050
3.3 26 001 003 004 006 007 008 010 011 013 018 019 022 024 025 027 028 030 034 035 039-040.501.XP.MI 039-040.501.XP.MI.SA 044 045 047 052 055
3.4 27 003 004 006 007 010 011 012 016 018 021 022 025 026 028 030 040 041 045 046 052 054 056 062 069 071 073 0644
3.5 35 002 003 004 006 007-036.501.XP.MI 007-036.501.XP.MI.SA 007-036.502.XP.MI 007-036.502.XP.MI.SA 009 012 015 017 018 019 020 026 030 033 036 040 047 049 049-056.501.XP.MI 049-056.501.XP.MI.SA 050 051 054 055 058 061 062 064 066 072 074
3.6 33 003 004 005 007 008 010 012 014 015 017 019 020 022 023 024 025 026 027 028 029 030 031 032 033 035 036 039 041 045 049 051 054 056
3.7 38 001-006.501.XP.MI 001-006.501.XP.MI.SA 001-006.502.XP.MI 001-006.502.XP.MI.SA 002 004 006 008 009 011 012 013 014 015 016 018 019 020 021 025 026 028 030 032 034 035 036 037 038 039 040 042 044 046 055 059 061 067
3.8 40 001-056.501.XP.MI 001-056.501.XP.MI.SA 001-056.502.XP.MI 001-056.502.XP.MI.SA 001-056.503.XP.MI 001-056.503.XP.MI.SA 001-056.504.XP.MI 001-056.504.XP.MI.SA 001-056.505.XP.MI 001-056.505.XP.MI.SA 001-056.506.XP.MI 001-056.506.XP.MI.SA 001-056.507.XP.MI 001-056.507.XP.MI.SA 001-056.508.XP.MI 001-056.508.XP.MI.SA 004 005 007 008 010 012 013 016 017 024 026 031 033 034 036 037 038 043 044 045 053 055 056 061
3.9 12 001 004 005 006 007 010 020 024 026 028 030 036
Chapter 4: Integration
4.R 9 001-032.501.XP.MI 001-032.501.XP.MI.SA 001-032.502.XP.MI 001-032.502.XP.MI.SA 024 037 038 049 060
4.1 61 001-030.501.XP.MI 001-030.501.XP.MI.SA 001-030.502.XP.MI 001-030.502.XP.MI.SA 001-030.503.XP.MI 001-030.503.XP.MI.SA 001-030.504.XP.MI 001-030.504.XP.MI.SA 001-030.505.XP.MI 001-030.505.XP.MI.SA 001-030.506.XP.MI 001-030.506.XP.MI.SA 001-030.507.XP.MI 001-030.507.XP.MI.SA 001-030.508.XP.MI 001-030.508.XP.MI.SA 001-030.509.XP.MI 001-030.509.XP.MI.SA 001-030.510.XP.MI 001-030.510.XP.MI.SA 001-030.511.XP.MI 001-030.511.XP.MI.SA 002 005 007 008 011 013 016 022 023 026 030 035-046.501.XP.MI 035-046.501.XP.MI.SA 035-046.502.XP.MI 035-046.502.XP.MI.SA 035-046.503.XP.MI 035-046.503.XP.MI.SA 035-046.504.XP.MI 035-046.504.XP.MI.SA 035-046.505.XP.MI 035-046.505.XP.MI.SA 036 037 038 039 045 046 047 050 051 058 064 065 066 067 070 075 076 079
4.2 59 001-006.501.XP.MI 001-006.501.XP.MI.SA 001-006.502.XP.MI 001-006.502.XP.MI.SA 001-006.503.XP.MI 001-006.503.XP.MI.SA 004 005 006 007 007-042.501.XP.MI 007-042.501.XP.MI.SA 007-072.501.XP.MI 007-072.501.XP.MI.SA 007-072.502.XP.MI 007-072.502.XP.MI.SA 007-072.503.XP.MI 007-072.503.XP.MI.SA 007-072.504.XP.MI 007-072.504.XP.MI.SA 007-072.505.XP.MI 007-072.505.XP.MI.SA 007-072.506.XP.MI 007-072.506.XP.MI.SA 007-072.507.XP.MI 007-072.507.XP.MI.SA 007-072.508.XP.MI 007-072.508.XP.MI.SA 008 010 012 013 015 016 020 021 022 023 024 025 027 030 032 033 036 042 043 045 048 052 056 062 063 069 076 077 082 083 085
4.3 26 003 005 010 011 012 015 017 018 020 025 029 031 033 035 038 039-044.501.XP.MI 039-044.501.XP.MI.SA 039-044.502.XP.MI 039-044.502.XP.MI.SA 043 045 048 051 052 059 060
4.4 20 002 005 006 008 010 012 013 016 019 020 021-028.501.XP.MI 021-028.501.XP.MI.SA 024 026 028 031 032 033 034 070
4.5 59 003-014.501.XP.MI 003-014.501.XP.MI.SA 003-014.502.XP.MI 003-014.502.XP.MI.SA 004 007 008 012 013 015 015-036.501.XP.MI 015-036.501.XP.MI.SA 015-036.502.XP.MI 015-036.502.XP.MI.SA 015-036.503.XP.MI 015-036.503.XP.MI.SA 015-036.504.XP.MI 015-036.504.XP.MI.SA 015-036.505.XP.MI 015-036.505.XP.MI.SA 015-036.506.XP.MI 015-036.506.XP.MI.SA 015-036.507.XP.MI 015-036.507.XP.MI.SA 020 022 025 028 030 033 034 035 037-062.501.XP.MI 037-062.501.XP.MI.SA 037-062.502.XP.MI 037-062.502.XP.MI.SA 037-062.503.XP.MI 037-062.503.XP.MI.SA 037-062.504.XP.MI 037-062.504.XP.MI.SA 043 046 048 049 054 057 066 068 075 076 077-080.501.XP.MI 077-080.501.XP.MI.SA 077-080.502.XP.MI 077-080.502.XP.MI.SA 080 086 093 094 095
4.6 26 001 001-008.501.XP.MI 001-008.501.XP.MI.SA 001-008.502.XP.MI 001-008.502.XP.MI.SA 002 003 004 007 008 010 012 013 016 019 020 022 023 024 025 026 027 043 044 045 046
Chapter 5: Applications of the Definite Integral
5.1 24 002 004 006 009 009-040.501.XP.MI 009-040.501.XP.MI.SA 009-040.502.XP.MI 009-040.502.XP.MI.SA 015 018 023 024 026 028 032 033 034 035 038 040 057 060 061 063
5.2 29 002 004 006 007 010 011 014 017 019 020 023 025 027 032 037-042.501.XP.MI 037-042.501.XP.MI.SA 037-042.502.XP.MI 037-042.502.XP.MI.SA 037-042.503.XP.MI 037-042.503.XP.MI.SA 050 051 053 055 057 059 060 067 068
5.3 20 002 003 004 005 006 009 010 014 015 020 021 022 026 030 035 043 044 045 047 049
5.4 27 002 004 007 007-018.501.XP.MI 007-018.501.XP.MI.SA 007-018.502.XP.MI 007-018.502.XP.MI.SA 008 012 014 016 017 020 022 023 024 029 030 032 033-043.501.XP.MI 033-043.501.XP.MI.SA 037 039 040 042 051 057
5.5 18 002 003 004 006 008 009 013 016 018 021 023 025 026 028 030 031 035 038
5.6 17 001 003 004 005 006 007 008 009 010 011 012 013 014 017 019 020 023
5.7 19 002 004 008 010 012 013 016 019 021 022 024 026 028 030 032 034 038 041 047
5.8 23 001 004 006 017 019-054.501.XP.MI 019-054.501.XP.MI.SA 022 023 025 028 030 037 039 043 044 046 050 053 055 056 058 062 063
Chapter 6: Techniques of Integration
6.R 5 036 043 044 051 053
6.1 42 001 001-044.501.XP.MI 001-044.501.XP.MI.SA 001-044.502.XP.MI 001-044.502.XP.MI.SA 001-044.503.XP.MI 001-044.503.XP.MI.SA 001-044.504.XP.MI 001-044.504.XP.MI.SA 001-044.505.XP.MI 001-044.505.XP.MI.SA 001-044.506.XP.MI 001-044.506.XP.MI.SA 002 004 006 010 012 013 014 017 018 020 022 029 030 031 037 040 042 044 046 052 055 057 058 059 060 061 062 067 069
6.2 23 001-048.501.XP.MI 001-048.501.XP.MI.SA 001-048.502.XP.MI 001-048.502.XP.MI.SA 002 004 007 013 015 016 018 023 027 032 037 040 046 048 049 055 056 060 061
6.3 24 001-032.501.XP.MI 001-032.501.XP.MI.SA 001-032.502.XP.MI 001-032.502.XP.MI.SA 004 006 008 010 011 013 015 016 020 022 024 026 030 031 034 035 037 039 041 042 047
6.4 24 003 006 007-051.501.XP.MI 007-051.501.XP.MI.SA 007-051.502.XP.MI 007-051.502.XP.MI.SA 011 014 016 022 024 026 032 034 037 042 044 045 057 058 061 062 066 072
6.5 25 002 004 006 009 012 014 018 020 023 024 027 028 036 039 043 044 064 070 074 082 086 090 094 096 100
6.6 50 004 005 007 007-042.501.XP.MI 007-042.501.XP.MI.SA 007-042.502.XP.MI 007-042.502.XP.MI.SA 007-042.503.XP.MI 007-042.503.XP.MI.SA 007-042.504.XP.MI 007-042.504.XP.MI.SA 007-042.505.XP.MI 007-042.505.XP.MI.SA 007-042.506.XP.MI 007-042.506.XP.MI.SA 007-042.507.XP.MI 007-042.507.XP.MI.SA 007-042.508.XP.MI 007-042.508.XP.MI.SA 007-042.509.XP.MI 007-042.509.XP.MI.SA 007-042.510.XP.MI 007-042.510.XP.MI.SA 007-042.511.XP.MI 007-042.511.XP.MI.SA 007-042.512.XP.MI 007-042.512.XP.MI.SA 012 014 016 020 021 023 024 027 028 029 030 032 033 035 038 041 045 046 048 053 054 058 077
Chapter 7: Differential Equations
7.R 1 017
7.1 26 009 009-018.501.XP.MI 009-018.501.XP.MI.SA 009-018.502.XP.MI 009-018.502.XP.MI.SA 010 012 014 015 016 017 018 023 024 026 027 036 037 039 042 047 048 050 051 052 058
7.2 18 001 002 003 004 005 006 007 008 018 019 021 022 023 025 026 028 035 036
7.3 19 001 002 003 004 005 006 007 010 011 014 015 016 019 021 022 023 024 025 026
7.4 25 005-016.501.XP.MI 005-016.501.XP.MI.SA 005-016.502.XP.MI 005-016.502.XP.MI.SA 006 007 008 010 011 012 013 015 016 017 018 019 021 025 029 031 032 033 035 036 040
7.5 1 005
Chapter 8: Infinite Sequences and Series
8.1 31 001 004 006 008 011 013-024.501.XP.MI 013-024.501.XP.MI.SA 013-024.502.XP.MI 013-024.502.XP.MI.SA 013-024.503.XP.MI 013-024.503.XP.MI.SA 013-024.504.XP.MI 013-024.504.XP.MI.SA 014 015 016 020 021 023 025 028 030 034 035 037 038 049 054 055 058 068
8.2 33 002 003 006 007-014.501.XP.MI 007-014.501.XP.MI.SA 007-014.502.XP.MI 007-014.502.XP.MI.SA 008 010 014 029-054.501.XP.MI 029-054.501.XP.MI.SA 029-054.502.XP.MI 029-054.502.XP.MI.SA 032 033 038 039 042 043 046 047 048 051 055-058.501.XP.MI 055-058.501.XP.MI.SA 059-062.501.XP.MI 059-062.501.XP.MI.SA 063 064 065 066 071
8.3 24 001-008.501.XP.MI 001-008.501.XP.MI.SA 002 004 006 007 008 010 012 016 018 019 020 021 024 025 026 027 033 038 044 045-050.501.XP.MI 045-050.501.XP.MI.SA 048
8.4 21 001 003 004 006 007 009 010 011 012 018 020 023 024 026 028 031 033 034 035 036 037
8.5 22 002 003 006 008 009 010 013 014 015 018 019 020 021 022 023 024 025 027 029 032 034 038
8.6 17 004 006 009 011 012 013 015 019 020 021 023 024 028 029 032 034 035
8.7 28 001-030.501.XP.MI 001-030.501.XP.MI.SA 001-030.502.XP.MI 001-030.502.XP.MI.SA 001-030.503.XP.MI 001-030.503.XP.MI.SA 001-030.504.XP.MI 001-030.504.XP.MI.SA 002 003 004 005 007 008 009 010 011 012 017 018 022 023 024 025 029 033 045 047
8.8 24 001 005 009 012 013 015 017 018 021 025 026 027 028 033 037 039 046 050 054 058 060 061 063 066
8.9 20 004 006 007 009 011 012 013 014 016 017 020 021 025 027 032 033 034 035 036 045
Chapter 9: Conic Sections, Parametric Equations, and Polar Coordinates
9.1 17 003 006 012 017 024 029 040 045 046 051 057 060 063 075 085 091 102
9.2 18 002 003 004 005 007 008 010 011 012 016 017 018 019 021 023 024 028 031
9.3 25 002 004 007-008.501.XP.MI 007-008.501.XP.MI.SA 008 012 016 019 021 025 029 030 031 031-036.501.XP.MI 031-036.501.XP.MI.SA 033 034 038 040 049 053 056 059 062 075
9.4 19 002 006 010 013 020 023 027 032 038 047 051 054 055 058 063 068 070 071 074
9.5 17 005 010 012 022 023 026 027 033 036 042 043 046 050 053 056 057 061
9.6 17 003 004 005 007 008 009 011 013 015 016 017 018 019 021 023 025 026
Chapter 10: Vectors and the Geometry of Space
10.1 14 008 012 014 018 022 024 028 030 042 046 056 062 064 068
10.2 21 008 016 021 024 026 030 031-034.501.XP.MI 031-034.501.XP.MI.SA 031-034.502.XP.MI 031-034.502.XP.MI.SA 034 036 039 042 056 057 060 065 070 074 078
10.3 18 003-008.501.XP.MI 003-008.501.XP.MI.SA 004 008 015 020 022 026 030 031 034 040 042 046 047 048 056 057
10.4 15 006 010 012 013-016.501.XP.MI 013-016.501.XP.MI.SA 014 018 020 022 024 028 030 034 038 039
10.5 20 004 008 011 012 013 014 016 018 019 024 030 031 034 037 040 045 048 052 056 062
10.6 20 004 008 012 013 014 015 016 017 018 019 020 022 024 030 034 038 046 050 051 052
10.7 12 002 010 014 020 022 026 032 038 040 048 056 062
Chapter 11: Vector-Valued Functions
11.1 12 002 010 014 018 022 026 034 036 038 042 046 050
11.2 10 004 008 012 014 020 022 024 030 034 038
11.3 14 001-008.501.XP.MI 001-008.501.XP.MI.SA 004 008 012 016 018 020 022 027 036 048 050 052
11.4 14 004 009 010 012 013 013-018.501.XP.MI 013-018.501.XP.MI.SA 014 016 017 018 024 030 035
11.5 13 002 006 007 008 012 014 022 024 028 030 036 040 044
Chapter 12: Functions of Several Variables
12.1 12 004 006 010 022 028 034 048 054 062 068 073 079
12.2 16 014 016 018 020 024 028 030 031-040.501.XP.MI 031-040.501.XP.MI.SA 031-040.502.XP.MI 031-040.502.XP.MI.SA 034 043 044 046 048
12.3 17 004 006 006-029.501.XP.MI 006-029.501.XP.MI.SA 010 014 018 026 030 034-039.501.XP.MI 034-039.501.XP.MI.SA 038 042 044 054 072 082
12.4 15 002 003-020.501.XP.MI 003-020.501.XP.MI.SA 006 010 012 014 018 022 026 028 030 032 035 038
12.5 13 004 006 008 014 018 020 024 026 028 032 036 040 042
12.6 13 004 006 008 012 016 028 030 032 034 038 046 048 052
12.7 13 006 008 010 016 018 022 024 026 028 030 032 038 040
12.8 15 006 008 010 018 020 022 024 034 038 040 044 048 056 501.XP.MI 501.XP.MI.SA
12.9 13 004 008 010 012 014 016 018 022 024 026 034 038 040
Chapter 13: Multiple Integrals
13.1 13 002 003 004 007 008 010 012 013 014 015 016 018 020
13.2 20 001-012.501.XP.MI 001-012.501.XP.MI.SA 002 006 010 013-032.501.XP.MI 013-032.501.XP.MI.SA 013-032.502.XP.MI 013-032.502.XP.MI.SA 013-032.503.XP.MI 013-032.503.XP.MI.SA 018 022 026 030 034 038 042 046 066
13.3 14 002 004 006 010 014 017-026.501.XP.MI 017-026.501.XP.MI.SA 018 022 026 030 032 034 042
13.4 12 002 003 006 008 010 011 012 016 018 020 022 026
13.5 12 002 003 004 005 006 007 008 011 012 013 014 016
13.6 15 002 003 005 005-010.501.XP.MI 005-010.501.XP.MI.SA 006 007 008 014 016 018 022 026 030 038
13.7 15 002 005 006 007 008 010 014 018 019-024.501.XP.MI 019-024.501.XP.MI.SA 020 022 026 030 036
13.8 13 002 008 010 014 016 018 020 022 024 025 026 027 028
Chapter 14: Vector Analysis
14.1 13 004 005 006 008 012 020 022 027 028 029 031 032 033
14.2 15 003 004 005 006 007 009 010 011 012 013 014 015 016 501.XP.MI 501.XP.MI.SA
14.3 17 001-022.501.XP.MI 001-022.501.XP.MI.SA 004 006 008 012 014 016 018 020 022 024 026 028 031-036.501.XP.MI 031-036.501.XP.MI.SA 032
14.4 19 004 006 008 010 012 014 016 018 021-022.501.XP.MI 021-022.501.XP.MI.SA 022 024 025-032.501.XP.MI 025-032.501.XP.MI.SA 026 028 030 033-036.501.XP.MI 033-036.501.XP.MI.SA
14.5 15 004 005-016.501.XP.MI 005-016.501.XP.MI.SA 006 008 010 012 014 018 020 022 026 028 034 036
14.6 12 004 006 016 018 020 022 024 028 030 032 036 038
14.7 12 004 006 008 014 016 018 020 022 024 026 030 034
14.8 13 005 005-018.501.XP.MI 005-018.501.XP.MI.SA 006 007 010 012 013 014 015 016 017 018
14.9 11 006 008 009 010 014 016 018 020 022 024 026
Total 2898 (1)