# Calculus 11th edition

George B. Thomas, Jr., Maurice D. Weir, Joel Hass, and Frank R. Giordano
Publisher: Pearson Education

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$29.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Preliminaries
• 1.1: Real Numbers and the Real Line (5)
• 1.2: Lines, Circles, and Parabolas (9)
• 1.3: Functions and Their Graphs (9)
• 1.4: Identifying Functions; Mathematical Models (9)
• 1.5: Combining Functions; Shifting and Scaling Graphs (11)
• 1.6: Trigonometric Functions (11)
• 1.7: Graphing with Calculators and Computers

• Chapter 2: Limits and Continuity
• 2.1: Rates of Change and Limits (8)
• 2.2: Calculating Limits Using the Limit Laws (7)
• 2.3: The Precise Definition of a Limit (7)
• 2.4: One-Sided Limits and Limits at Infinity (13)
• 2.5: Infinite Limits and Vertical Asymptotes (7)
• 2.6: Continuity (10)
• 2.7: Tangents and Derivatives (6)

• Chapter 3: Differentiation
• 3.1: The Derivative as a Function (8)
• 3.2: Differentiation Rules (8)
• 3.3: The Derivative as a Rate of Change (5)
• 3.4: Derivatives of Trigonometric Functions (7)
• 3.5: The Chain Rule and Parametric Equations (10)
• 3.6: Implicit Differentiation (6)
• 3.7: Related Rates (4)
• 3.8: Linearization and Differentials (5)

• Chapter 4: Applications of Derivatives
• 4.1: Extreme Values of Functions (9)
• 4.2: The Mean Value Theorem (6)
• 4.3: Monotonic Functions and the First Derivative Test (9)
• 4.4: Concavity and Curve Sketching (7)
• 4.5: Applied Optimization Problems (8)
• 4.6: Indeterminate Forms and L'Hopital's Rule (6)
• 4.7: Newton's Method (4)
• 4.8: Antiderivatives (9)

• Chapter 5: Integration
• 5.1: Estimating with Finite Sums (7)
• 5.2: Sigma Notation and Limits of Finite Sums (8)
• 5.3: The Definite Integral (11)
• 5.4: The Fundamental Theorem of Calculus (8)
• 5.5: Indefinite Integrals and the Substitution Rule (9)
• 5.6: Substitution and Area Between Curves (10)

• Chapter 6: Applications of Definite Integrals
• 6.1: Volumes by Slicing and Rotation About an Axis (5)
• 6.2: Volumes by Cylindrical Shells (8)
• 6.3: Lengths of Plane Curves (6)
• 6.4: Moments and Centers of Mass (11)
• 6.5: Areas of Surfaces of Revolution and the Theorems of Pappus (11)
• 6.6: Work (9)
• 6.7: Fluid Pressures and Forces (3)

• Chapter 7: Transcedental Functions
• 7.1: Inverse Functions and Their Derivatives (8)
• 7.2: Natural Logarithms (10)
• 7.3: The Exponential Function (9)
• 7.4: ax and logax (4)
• 7.5: Exponential Growth and Decay (12)
• 7.6: Relative Rates of Growth (6)
• 7.7: Inverse Trigonometric Functions (8)
• 7.8: Hyperbolic Functions (7)

• Chapter 8: Techniques of Integration
• 8.1: Basic Integration Formulas
• 8.2: Integration by Parts (7)
• 8.3: Integration of Rational Functions by Partial Fractions (7)
• 8.4: Trigonometric Integrals (6)
• 8.5: Trigonometric Substitutions (6)
• 8.6: Integral Tables and Computer Algebra Systems (5)
• 8.7: Numerical Integrals (2)
• 8.8: Improper Integrals (7)
• 8: Practice Exercises (11)

• Chapter 9: Further Applications of Integration
• 9.1: Slope Fields and Separable Differential Equations (8)
• 9.2: First-Order Linear Differential Equations (9)
• 9.3: Euler's Method (4)
• 9.4: Graphical Solutions of Autonomous Differential Equations (5)
• 9.5: Applications of First-Order Differential Equations (7)

• Chapter 10: Conic Sections and Polar Coordinates
• 10.1: Conic Sections and Quadratic Equations (15)
• 10.2: Classifying Conic Sections by Eccentricity (12)
• 10.3: Quadratic Equations and Rotations (8)
• 10.4: Conics and Parametric Equations; The Cycloid (3)
• 10.5: Polar Coordinates (7)
• 10.6: Graphing in Polar Coordinates (3)
• 10.7: Areas and Lengths in Polar Coordinates (6)
• 10.8: Conic Sections in Polar Coordinates (5)

• Chapter 11: Infinte Sequences and Series
• 11.1: Sequences (10)
• 11.2: Infinite Series (9)
• 11.3: The Integral Test (5)
• 11.4: Comparison Tests (4)
• 11.5: The Ratio and Root Tests (5)
• 11.6: Alternating Series, Absolute and Conditional Convergence (5)
• 11.7: Power Series (6)
• 11.8: Taylor and Maclaurin Series (6)
• 11.9: Convergence of Taylor Series; Error Estimates (5)
• 11.10: Applications of Power Series (5)
• 11.11: Fourier Series (2)

• Chapter 12: Vectors and the Geometry of Space
• 12.1: Three-Dimensional Coordinate Systems (12)
• 12.2: Vectors (9)
• 12.3: The Dot Product (8)
• 12.4: The Cross Product (10)
• 12.5: Lines and Planes in Space (10)
• 12.6: Cylinders and Quadric Surfaces (12)

• Chapter 13: Vector-Valued Functions and Motion in Space
• 13.1: Vector Functions (9)
• 13.2: Modeling Projectile Motion (6)
• 13.3: Arc Length and the Unit Tangent Vector T (6)
• 13.4: Curvature and the Unit Normal Vector N (4)
• 13.5: Torsion and the Unit Binormal Vector B (4)
• 13.6: Planetary Motion and Satellites (5)

• Chapter 14: Partial Derivatives
• 14.1: Functions of Several Variables (8)
• 14.2: Limits and Continuity in Higher Dimensions (11)
• 14.3: Partial Derivatives (11)
• 14.4: The Chain Rule (8)
• 14.5: Directional Derivatives and Gradient Vectors (6)
• 14.6: Tangent Planes and Differentials (8)
• 14.7: Extreme Values and Saddle Points (8)
• 14.8: Lagrange Multipliers (6)
• 14.9: Partial Derivatives with Constrained Variables (4)
• 14.10: Taylor's Formula for Two Variables (3)

• Chapter 15: Multiple Integrals
• 15.1: Double Integrals (9)
• 15.2: Areas, Moments, and Centers of Mass (7)
• 15.3: Double Integrals in Polar Form (7)
• 15.4: Triple Integrals in Rectangular Coordinates (8)
• 15.5: Masses and Moments in Three Dimensions (8)
• 15.6: Triple Integrals in Cylindrical and Spherical Coordinates (12)
• 15.7: Substitutions in Multiple Integrals (3)

• Chapter 16: Integration in Vector Fields
• 16.1: Line Integrals (2)
• 16.2: Vector Fields, Work, Circulation, and Flux (3)
• 16.3: Path Independence, Potential Functions, and Conservative Fields (2)
• 16.4: Green's Theorem in the Plane (3)
• 16.5: Surface Area and Surface Integrals
• 16.6: Parametrized Surfaces
• 16.7: Stokes' Theorem
• 16.8: The Divergence Theorem and a Unified Theory

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
E - Practice Exercises

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Preliminaries
1.1 5 004 008 018 024 034
1.2 9 010 016 022 026 044 046 068 082 094
1.3 9 002 006 010 014 016 020 028 038 041
1.4 9 002 004 010 018 020 024 030 034 036
1.5 11 002 004 006 012 014 018 020 022 028 056 060
1.6 11 002 004 008 010 014 020 040 044 066 068 069
Chapter 2: Limits and Continuity
2.1 8 004 006 010 010.alt 022 028 030 032
2.2 7 002 006 014 020 024 044 050
2.3 7 016 020 024 030 032 052 056
2.4 13 002 002.alt 004 004.alt 014 016 022 026 034 038 048 066 070
2.5 7 002 004 008 010 018 022 044
2.6 10 006 008 014 018 022 030 032 052 058 058.alt
2.7 6 012 016 028 030 034 034.alt
Chapter 3: Differentiation
3.1 8 002 004 006 008 012 016 024 046
3.2 8 002 004 010 014 022 030 032 051
3.3 5 008 010 024 026 028
3.4 7 006 012 020 024 044 054 056
3.5 10 006 008 020 030 040 050 052 054 064 098
3.6 6 004 010 016 028 038 058
3.7 4 002 008 016 020
3.8 5 020 026 038 048 056
Chapter 4: Applications of Derivatives
4.1 9 002 002.alt 006 006.alt 018 026 038 046 056
4.2 6 002 024 024.alt 028 034 058
4.3 9 002 004 008 014 018 032 034 048 048.alt
4.4 7 002 004 072 074 076 082 082.alt
4.5 8 004 008 010 012 018 022 032 044
4.6 6 008 010 014 024 026 030
4.7 4 004 012 016 022
4.8 9 002 004 012 018 022 054 068 094 096
Chapter 5: Integration
5.1 7 002 012 014 015 016 019 020
5.2 8 002 004 008 012 014 018 020 022
5.3 11 002 004 008 012 014 016 018 030 034 052 064
5.4 8 002 006 008 014 020 032 038 056
5.5 9 002 004 005 006 008 022 046 054 058
5.6 10 002 004 006 018 020 022 026 044 064 070
Chapter 6: Applications of Definite Integrals
6.1 5 006 008 011 014 016
6.2 8 008 010 012 016 018 022 028 030
6.3 6 002 004 006 010 026 028
6.4 11 002 004 006 008 010 012 016 020 026 036 038
6.5 11 010 012 014 016 018 022 024 034 036 038 042
6.6 9 002 003 004 005 006 008 010 018 022
6.7 3 010 012 020
Chapter 7: Transcedental Functions
7.1 8 002 004 006 014 020 022 036 046
7.2 10 002 006 008 022 030 038 040 050 056 062
7.3 9 004 008 012 014 022 038 044 046 052
7.4 4 002 012 022 043
7.5 12 002 004 008 009 010 012 012.alt 014 018 022 024 026
7.6 6 002 002.alt 004 004.alt 006 006.alt
7.7 8 006 014 026 032 054 062 074 100
7.8 7 002 004 014 026 036 043 052
Chapter 8: Techniques of Integration
8.E 11 002 004 012 022 026 034 042 044 050 054 072
8.2 7 004 006 010 012 022 030 034
8.3 7 002 008 012 016 024 030 034
8.4 6 006 008 014 018 026 032
8.5 6 004 008 016 034 040 042
8.6 5 040 044 052 054 060
8.7 2 028 030
8.8 7 008 022 024 044 048 054 060
Chapter 9: Further Applications of Integration
9.1 8 012 014 016 018 019 020 021 022
9.2 9 002 006 008 014 016 018 024 028 030
9.3 4 002 004 008 012
9.4 5 002 004 006 010 016
9.5 7 001 002 003 004 005 008 010
Chapter 10: Conic Sections and Polar Coordinates
10.1 15 001 002 003 004 005 006 007 008 040 042 046 052 056 060 078
10.2 12 004 006 008 010 012 024 028 030 032 034 036 038
10.3 8 002 004 008 010 012 014 016 036
10.4 3 014 016 018
10.5 7 024 026 032 044 050 052 060
10.6 3 018 020 032
10.7 6 002 006 010 012 020 022
10.8 5 004 006 010 024 030
Chapter 11: Infinte Sequences and Series
11.1 10 006 014 018 024 032 042 052 076 098 102
11.2 9 006 008 016 020 030 036 052 056 070
11.3 5 002 008 010 014 024
11.4 4 006 010 020 026
11.5 5 006 010 024 030 042
11.6 5 006 008 018 022 051
11.7 6 006 014 024 034 040 042
11.8 6 002 006 010 020 022 024
11.9 5 004 006 012 020 036
11.10 5 002 008 012 020 032
11.11 2 002 008
Chapter 12: Vectors and the Geometry of Space
12.1 12 008 010 016 020 022 036 038 040 042 044 048 050
12.2 9 004 008 012 018 024 026 036 038 046
12.3 8 002 004 008 010 012 014 018 020
12.4 10 004 007 008 016 018 024 028 036 038 040
12.5 10 004 006 022 024 028 034 038 048 056 068
12.6 12 001 002 003 004 005 006 007 008 009 010 011 012
Chapter 13: Vector-Valued Functions and Motion in Space
13.1 9 002 006 012 016 018 022 024 028 040
13.2 6 002 004 008 012 018 026
13.3 6 004 006 010 012 014 016
13.4 4 002 010 019 022
13.5 4 004 006 008 012
13.6 5 002 004 006 010 012
Chapter 14: Partial Derivatives
14.1 8 002 004 006 008 010 012 030 046
14.2 11 004 006 008 016 018 022 028 032 044 052 054
14.3 11 002 004 006 008 016 024 026 030 044 054 058
14.4 8 004 006 009 026 030 036 040 048
14.5 6 004 006 010 014 018 022
14.6 8 004 012 016 020 028 028.alt 038 050
14.7 8 004 010 016 020 032 040 044 048
14.8 6 008 010 020 022 026 032
14.9 4 002 004 006 008
14.10 3 002 004 010
Chapter 15: Multiple Integrals
15.1 9 012 014 016 018 020 032 042 044 046
15.2 7 016 018 020 022 028 032 054
15.3 7 002 004 008 018 024 030 034
15.4 8 006 008 010 016 024 026 038 042
15.5 8 002 004 008 010 014 016 020 022
15.6 12 002 004 006 008 010 022 024 028 050 056 058 062
15.7 3 002 004 008
Chapter 16: Integration in Vector Fields
16.1 2 010 020
16.2 3 010 023 026
16.3 2 008 030
16.4 3 006 008 018
Total 830