# Calculus Early Transcendentals 1st edition

Dale Varberg, Edwin Purcell, and Steve Rigdon
Publisher: Pearson Education

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$29.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Preliminaries
• 1.1: Real Numbers, Estimation, and Logic (10)
• 1.2: Inequalities and Absolute Values (10)
• 1.3: The Rectangle Coordinate System (10)
• 1.4: Graphs and Equations (10)
• 1.5: Functions and Their Graphs (10)
• 1.6: Operational on Functions (10)
• 1.7: Exponential and Logarithmic Functions (10)
• 1.8: The Trigonometric Functions (10)
• 1.9: The Inverse Trigonometric Functions (10)
• 1: Test Questions (10)

• Chapter 2: Limits
• 2.1: Introduction to Limits (10)
• 2.2: Rigorous Study of Limits (2)
• 2.3: Limit Theorems (10)
• 2.4: Limits at Infinity; Infinite Limits (10)
• 2.5: Limits Involving Trigonometric Functions (10)
• 2.6: Natural Exponential, Natural Log, and Hyperbolic Functions (10)
• 2.7: Continuity of Functions (10)
• 2: Test Questions (10)

• Chapter 3: The Derivative
• 3.1: Two Problems with One Theme (10)
• 3.2: The Derivative (10)
• 3.3: Rules for Finding Derivatives (10)
• 3.4: Derivatives of Trigonometric Functions (10)
• 3.5: The Chain Rule (10)
• 3.6: Higher-Order Derivatives (10)
• 3.7: Implicit Differentiation (10)
• 3.8: Related Rates (10)
• 3.9: Derivatives of Exponential and Logarithmic Functions (10)
• 3.10: Derivatives of Hyperbolic and Inverse Trigonometric Functions (10)
• 3.11: Differentials and Approximations (10)
• 3: Test Questions (10)

• Chapter 4: Applications of the Derivative
• 4.1: Maxima and Minima (10)
• 4.2: Monotonicity and Concavity (10)
• 4.3: Local Extrema and Extrema on Open Intervals (10)
• 4.4: Practical Problems (10)
• 4.5: Graphing Functions Using Calculus
• 4.6: The Mean Value Theorem for Derivatives (10)
• 4.7: Solving Equations Numerically (10)
• 4.8: Antiderivatives (10)
• 4.9: Introduction to Differential Equations (10)
• 4.10: Exponential Growth and Decay (10)
• 4: Test Questions (10)

• Chapter 5: The Definite Integral
• 5.1: Introduction to Area (10)
• 5.2: The Definite Integral (10)
• 5.3: The First Fundamental Theorem of Calculus (10)
• 5.4: The Second Fundamental Theorem of Calculus and the Method of Substitution (10)
• 5.5: The Mean Value Theorem for Integrals and the Use of Symmetry (10)
• 5.6: Numerical Integration (10)
• 5: Test Questions (10)

• Chapter 6: Application of the Integral
• 6.1: The Area of a Plane Region (10)
• 6.2: Volumes of Solids: Slabs, Disks, and Washers (10)
• 6.3: Volumes of Solids of Revolution: Shells (10)
• 6.4: Length of a Plane Curve (10)
• 6.5: Work and Fluid Force (10)
• 6.6: Moments and Center of Mass (10)
• 6.7: Probability and Random Variables (10)
• 6: Test Questions (10)

• Chapter 7: Techniques of Integration and Differential Equations
• 7.1: Basic Integration Rules (10)
• 7.2: Integration by Parts (10)
• 7.3: Some Trigonometric Integrals (10)
• 7.4: Rationalizing Substitutions (10)
• 7.5: Integration of Rational Functions Using Partial Fractions (10)
• 7.6: Strategies for Integration (10)
• 7.7: First-Order Linear Differential Equations (10)
• 7.8: Approximations for Differential Equations (10)
• 7: Test Questions (10)

• Chapter 8: Indeterminate Forms and Improper Integrals
• 8.1: Indeterminate Forms of Type 0/0 (10)
• 8.2: Other Indeterminate Forms (10)
• 8.3: Improper Integrals: Infinite Limits of Integration (10)
• 8.4: Improper Integrals: Infinite Integrands (10)
• 8: Test Questions (10)

• Chapter 9: Infinite Series
• 9.1: Infinite Sequences (10)
• 9.2: Infinite Series (10)
• 9.3: Positive Series: The Integral Test (10)
• 9.4: Positive Series: Other Tests (10)
• 9.5: Alternating Series, Absolute Convergence, and Conditional Convergence (10)
• 9.6: Power Series (10)
• 9.7: Operations on Power Series (10)
• 9.8: Taylor and Maclaurin Series (10)
• 9.9: The Taylor Approximation to a Function (10)
• 9: Test Questions (10)

• Chapter 10: Conics and Polar Coordinates
• 10.1: The Parabola (10)
• 10.2: Ellipses and Hyperbolas (10)
• 10.3: Translation and Rotation of Axes (10)
• 10.4: Parametric Representation of Curves in the Plane (10)
• 10.5: The Polar Coordinate System (10)
• 10.6: Graphs of Polar Equations
• 10.7: Calculus in Polar Coordinates (10)
• 10: Test Questions (10)

• Chapter 11: Geometry in Space and Vectors
• 11.1: Cartesian Coordinates in Three-Space (10)
• 11.2: Vectors (10)
• 11.3: The Dot Product (10)
• 11.4: The Cross Product (10)
• 11.5: Vector-Valued Functions and Curvilinear Motion (10)
• 11.6: Lines and Tangent Lines in Three-Space (10)
• 11.7: Curvature and Components of Acceleration (10)
• 11.8: Surfaces in Three-Space (10)
• 11.9: Cylindrical and Spherical Coordinates (10)
• 11: Test Questions (10)

• Chapter 12: Derivatives for Functions of Two or More Variables
• 12.1: Functions of Two or More Variables (10)
• 12.2: Partial Derivatives (10)
• 12.3: Limits and Continuity (10)
• 12.4: Differentiability (10)
• 12.5: Directional Derivatives and Gradients (10)
• 12.6: The Chain Rule (10)
• 12.7: Tangent Planes and Approximations (10)
• 12.8: Maxima and Minima (10)
• 12.9: The Method of Lagrange Multipliers (10)
• 12: Test Questions (10)

• Chapter 13: Multiple Integrals
• 13.1: Double Integrals over Rectangles (10)
• 13.2: Iterated Integrals (10)
• 13.3: Double Integrals over Nonrectangular Regions (10)
• 13.4: Double Integrals in Polar Coordinates (10)
• 13.5: Applications of Double Integrals (10)
• 13.6: Surface Area (10)
• 13.7: Triple Integrals in Cartesian Coordinates (10)
• 13.8: Triple Integrals in Cylindrical and Spherical Coordinates (10)
• 13.9: Change of Variables in Multiple Integrals (10)
• 13: Test Questions (10)

• Chapter 14: Vector Calculus
• 14.1: Vector Fields (10)
• 14.2: Line Integrals (10)
• 14.3: Independence of Path (10)
• 14.4: Green's Theorem in the Plane (10)
• 14.5: Surface Integrals (10)
• 14.6: Gauss's Divergence Theorem (10)
• 14.7: Stokes's Theorem (10)
• 14: Test Questions (10)

• Chapter 15: Differential Equations
• 15.1: Linear Homogeneous Equations (10)
• 15.2: Nonhomogeneous Equations (10)
• 15.3: Applications of Second-Order Equations (10)
• 15: Test Questions (10)

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
T - Test Questions

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Preliminaries
1.T 10 008 010 014 016 020 026 028 030 042 048
1.1 10 002 010 020 022 024 034 042 052 056 070
1.2 10 004 008 010 012 014 016 020 030 036 046
1.3 10 002 012 020 024 030 036 042 046 064 068
1.4 10 002 006 010 014 018 022 026 030 034 038
1.5 10 002 006 010 016 020 024 026 030 034 036
1.6 10 006 010 016 032 034 036 038 040 042 050
1.7 10 002 006 010 012 014 016 018 020 022 024
1.8 10 002 004 006 014 016 020 022 026 030 036
1.9 10 002 004 006 008 010 012 014 026 028 036
Chapter 2: Limits
2.T 10 002 006 008 010 014 016 018 022 034 038
2.1 10 004 006 008 014 018 020 034 036 052 054
2.2 2 002 004
2.3 10 002 006 008 014 016 022 026 030 032 042
2.4 10 002 004 008 010 020 022 028 034 040 060
2.5 10 002 004 005 006 008 010 012 014 016 018
2.6 10 002 006 010 020 024 026 028 034 038 040
2.7 10 002 010 012 018 020 024 032 042 050 066
Chapter 3: The Derivative
3.T 10 008 012 018 020 024 026 028 032 036 046
3.1 10 010 012 014 016 018 020 022 028 030 034
3.2 10 004 012 020 022 024 028 030 048 052 056
3.3 10 002 014 018 024 030 034 038 046 052 056
3.4 10 002 004 006 008 010 012 014 018 022 030
3.5 10 002 004 006 010 012 014 018 030 034 060
3.6 10 002 004 006 008 010 012 014 022 030 036
3.7 10 002 004 006 008 010 012 020 030 034 040
3.8 10 002 004 006 007 008 010 012 013 014 016
3.9 10 014 016 018 020 026 028 034 038 046 054
3.10 10 002 006 012 014 016 020 026 036 042 044
3.11 10 002 004 008 010 012 018 028 032 040 044
Chapter 4: Applications of the Derivative
4.T 10 010 016 022 040 042 050 054 060 074 080
4.1 10 006 008 010 012 014 016 018 020 022 024
4.2 10 002 004 006 008 010 012 016 020 024 028
4.3 10 002 004 006 008 012 014 016 018 024 032
4.4 10 002 004 006 030 050 054 058 060 062 064
4.6 10 002 004 006 008 009 010 012 014 016 018
4.7 10 002 004 006 008 010 016 018 026 028 032
4.8 10 002 006 010 018 022 028 030 036 038 042
4.9 10 006 008 010 012 014 018 020 026 028 030
4.10 10 002 008 010 012 014 018 022 026 030 038
Chapter 5: The Definite Integral
5.T 10 002 006 008 010 014 018 024 030 032 036
5.1 10 002 004 006 008 016 018 020 040 054 056
5.2 10 004 006 012 014 016 018 022 032 036 038
5.3 10 010 012 014 016 018 020 022 024 044 050
5.4 10 004 010 016 018 026 032 042 052 060 074
5.5 10 002 006 010 014 016 020 024 028 042 048
5.6 10 002 003 004 005 006 008 010 012 014 016
Chapter 6: Application of the Integral
6.T 10 001 002 004 006 008 010 012 014 016 024
6.1 10 002 006 012 016 018 020 024 028 030 032
6.2 10 001 002 004 006 007 010 012 014 016 018
6.3 10 001 002 003 004 006 008 010 012 018 022
6.4 10 002 006 010 012 014 018 024 026 030 038
6.5 10 002 004 006 014 016 018 020 022 032 034
6.6 10 002 004 006 008 010 012 014 016 026 032
6.7 10 002 006 010 012 014 016 018 022 024 026
Chapter 7: Techniques of Integration and Differential Equations
7.T 10 004 010 014 022 028 036 048 050 060 065
7.1 10 002 010 016 018 026 028 032 040 046 052
7.2 10 002 006 012 018 024 028 038 040 066 070
7.3 10 002 006 008 010 012 016 020 022 028 032
7.4 10 002 006 010 012 018 020 022 024 028 030
7.5 10 002 004 010 014 018 020 026 036 040 042
7.6 10 002 004 006 008 012 014 016 026 036 042
7.7 10 002 004 008 010 011 012 013 014 016 018
7.8 10 001 002 003 008 009 010 012 014 015 016
Chapter 8: Indeterminate Forms and Improper Integrals
8.T 10 002 004 012 016 022 026 028 030 032 034
8.1 10 002 006 008 010 012 018 020 030 036 038
8.2 10 004 006 008 012 016 024 032 034 036 040
8.3 10 002 004 008 012 014 018 020 024 026 030
8.4 10 004 006 008 012 016 022 028 030 042 044
Chapter 9: Infinite Series
9.T 10 002 006 008 014 018 024 034 038 054 056
9.1 10 002 004 008 014 016 020 022 024 028 056
9.2 10 002 004 006 010 012 016 020 022 028 036
9.3 10 002 002-10 004 006 010 014-22 024 028 030 032
9.4 10 002 004 006-10 012 016 020 022 028 030 032
9.5 10 002 004 006 014 016-26 019 021 028 029 030
9.6 10 002 004 006 008 010 016 020 024 026 028
9.7 10 002 004 005 006 008 010 014 016 018-24 026
9.8 10 002 004 006 014 016 020 022 024 030 032
9.9 10 002 004 006 008 010 012 014 016 018 044
Chapter 10: Conics and Polar Coordinates
10.T 10 004 014 016 020 022 026 028 030 032 050
10.1 10 002 010 012 014 016 018 020 022 028 034
10.2 10 002 002-008 004 006 008 018 022 032 038 044
10.3 10 002 006 010 014 030 032 034 036 040 042
10.4 10 022 024 026 028 030 032 036 038 042 050
10.5 10 008 010 012 013 014 015 018 020 030 042
10.7 10 004 006 008 012 014 016 018 020 022 028
Chapter 11: Geometry in Space and Vectors
11.T 10 002 004 008 010 014 018 022 028 032 042
11.1 10 008 010 012 014 016 026 028 030 032 034
11.2 10 010 012 014 015 016 018 019 020 022 024
11.3 10 002 004 006 020 026 032 034 044 066 070
11.4 10 002 004 006 008 010 012 016 018 020 024
11.5 10 004 006 010 014 016 020 024 030 036 042
11.6 10 002 004 006 008 010 012 014 015 024 025
11.7 10 002 004 008 012 016 020 028 034 042 050
11.8 10 002 004 006 010 014 016 018 028 032 038
11.9 10 002 004 006 017 018 020 022 024 026 028
Chapter 12: Derivatives for Functions of Two or More Variables
12.T 10 003 004 006 008 009 012 016 020 022 028
12.1 10 001 002 003 004 005 006 027 028 034 038
12.2 10 002 006 008 010 014 016 018 030 034 042
12.3 10 002 004 006 008 010 012 014 016 026 030
12.4 10 002 004 006 008 010 011 012 014 015 016
12.5 10 002 004 006 008 010 011 012 017 024 025
12.6 10 002 004 006 008 010 012 014 016 022 024
12.7 10 001 002 004 006 008 010 012 014 026 030
12.8 10 002 004 006 008 010 012 014 022 024 026
12.9 10 002 004 006 007 008 010 014 016 022 028
Chapter 13: Multiple Integrals
13.T 10 002 003 004 010 012 013 014 015 016 018
13.1 10 002 003 004 005 006 007 008 010 012 022
13.2 10 002 004 006 014 018 020 022 024 030 032
13.3 10 002 006 010 014 016 018 020 026 034 044
13.4 10 002 004 006 008 010 014 020 022 026 032
13.5 10 002 004 006 010 012 014 016 018 020 022
13.6 10 001 002 003 004 005 006 007 008 015 028
13.7 10 002 004 005 006 008 010 024 025 044 045
13.8 10 001 002 004 006 008 010 014 020 022 024
13.9 10 007 008 009 010 012 014 017 018 019 020
Chapter 14: Vector Calculus
14.T 10 002 004 005 006 007 008 010 011 012 013
14.1 10 007 008 010 011 012 013 014 016 018 030
14.2 10 002 004 006 008 010 012 014 020 024 028
14.3 10 002 004 006 008 009 010 014 015 016 018
14.4 10 002 004 005 006 010 012 014 015 016 028
14.5 10 002 004 006 008 010 012 014 021 022 028
14.6 10 001 002 004 006 007 008 009 010 012 020
14.7 10 001 004 005 006 007 008 009 014 015 016
Chapter 15: Differential Equations
15.T 10 001 002 004 006 008 010 012 014 015 016
15.1 10 002 004 006 008 010 011 012 014 016 030
15.2 10 002 004 006 008 010 012 014 016 018 022
15.3 10 001 002 004 005 006 007 008 010 012 014
Total 1272