Calculus: Tutorial Bank (Early Transcendentals) 1st edition

Textbook Cover

WebAssign
Publisher: WebAssign

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.


Access is contingent on use of this textbook in the instructor's classroom.

This question set can be adopted for use in any WebAssign course at no additional cost. Applicable WebAssign student registration costs are based on institution type and textbook adopted.

  • Chapter 1: Limits and Continuity
    • 1.1: Introduction to Limits (16)
    • 1.2: Evaluating Limits Using Limit Laws (14)
    • 1.3: Continuity (14)
    • 1.4: Evaluating Limits at Infinity (14)
    • 1.5: The Precise Definition of a Limit (6)

  • Chapter 2: Differentiation
    • 2.1: Rates of Change: Secant Lines and Tangent Lines (18)
    • 2.2: The Definition of the Derivative (14)
    • 2.3: Power and Sum Rules (6)
    • 2.4: Product and Quotient Rules (12)
    • 2.5: Derivatives of Trigonometric Functions (12)
    • 2.6: The Chain Rule (14)
    • 2.7: Implicit Differentiation (8)
    • 2.8: Logarithmic Differentiation (14)
    • 2.9: Derivatives of Hyperbolic and Inverse Trigonometric Functions (14)

  • Chapter 3: Applications of Differentiation
    • 3.1: Linearization and Differentials (12)
    • 3.2: Extreme Values of a Function (20)
    • 3.3: Mean Value Theorem (8)
    • 3.4: First and Second Derivative Tests (20)
    • 3.5: Curve Sketching (4)
    • 3.6: Optimization (12)
    • 3.7: Related Rates (20)
    • 3.8: Indeterminate Forms and L'Hospital's Rule (10)
    • 3.9: Newton's Method (8)

  • Chapter 4: Integration
    • 4.1: Antiderivatives (16)
    • 4.2: The Indefinite Integral (6)
    • 4.3: The Area Under a Curve and Riemann Sums (10)
    • 4.4: The Definite Integral (16)
    • 4.5: The Fundamental Theorem of Calculus (20)

  • Chapter 5: Integration Techniques
    • 5.1: The Substitution Method (12)
    • 5.2: Integration by Parts (12)
    • 5.3: Trigonometric Integrals (10)
    • 5.4: Trigonometric Substitution (16)
    • 5.5: Partial Fractions (14)
    • 5.6: Integration by Tables and Computer Systems (6)
    • 5.7: Improper Integrals (10)
    • 5.8: Numeric Integration (10)

  • Chapter 6: Applications of Integration
    • 6.1: Areas Between Curves (10)
    • 6.2: Volumes of Solids by Slicing (2)
    • 6.3: Volumes of Revolution: The Disk and Washer Methods (12)
    • 6.4: Volumes of Revolution: The Shell Method (12)
    • 6.5: Arc Length and Areas of Surfaces of Revolution (16)
    • 6.6: Average Value of a Function (6)
    • 6.7: Work and Fluid Force (20)
    • 6.8: Moments and Center of Mass (12)
    • 6.9: Probability and Random Variables (8)
    • 6.10: Economics (6)

  • Chapter 7: Differential Equations
    • 7.1: Introduction to Differential Equations (6)
    • 7.2: Direction Fields and Euler's Method (6)
    • 7.3: Separable Equations (14)
    • 7.4: Exponential Growth and Decay (8)
    • 7.5: The Logistic Equation (6)
    • 7.6: First-Order Linear Equations (10)

  • Chapter 8: Sequences and Series
    • 8.1: Sequences (14)
    • 8.2: Series (10)
    • 8.3: The Integral Test (8)
    • 8.4: The Comparison Tests (8)
    • 8.5: Alternating Series, Absolute Convergence, and Conditional Convergence (14)
    • 8.6: The Ratio and Root Tests (16)
    • 8.7: Power Series (8)
    • 8.8: Representing Functions as Power Series (4)
    • 8.9: Taylor and Maclaurin Series (28)

  • Chapter 9: Parametric Equations and Polar Coordinates
    • 9.1: Parametric Equations (10)
    • 9.2: The Calculus of Parametric Equations (16)
    • 9.3: Polar Coordinates (10)
    • 9.4: Calculus in Polar Coordinates (10)

  • Chapter 10: Conic Sections
    • 10.1: Introduction to Conic Sections (8)
    • 10.2: Parametrized Conic Sections
    • 10.3: Conic Sections in Polar Coordinates (10)

  • Chapter 11: Vectors
    • 11.1: Three-Dimensional Coordinate Systems (4)
    • 11.2: Vectors (6)
    • 11.3: The Dot Product (4)
    • 11.4: The Cross Product (4)
    • 11.5: Lines and Planes in Space (6)
    • 11.6: Surfaces in Space (2)

  • Chapter 12: Vector-Valued Functions
    • 12.1: Vector-Valued Functions and Space Curves (4)
    • 12.2: Calculus of Vector-Valued Functions (4)
    • 12.3: Arc Length and Curvature (6)
    • 12.4: Velocity and Acceleration (8)

  • Chapter 13: Partial Derivatives
    • 13.1: Multivariable Functions (4)
    • 13.2: Limits and Continuity (2)
    • 13.3: Partial Derivatives (4)
    • 13.4: The Chain Rule (4)
    • 13.5: Tangent Planes and Differentials (4)
    • 13.6: Directional Derivatives and Gradients (4)
    • 13.7: Extrema of Multivariable Functions (4)
    • 13.8: Lagrange Multipliers (4)

  • Chapter 14: Multiple Integration
    • 14.1: Double Integrals over Rectangles
    • 14.2: Iterated Integrals (2)
    • 14.3: Double Integrals over General Regions (4)
    • 14.4: Double Integrals in Polar Coordinates (4)
    • 14.5: Applications of Double Integrals
    • 14.6: Triple Integrals in Rectangular Coordinates (4)
    • 14.7: Triple Integrals in Other Coordinate Systems
    • 14.8: Change of Variables in Multiple Integrals (2)

  • Chapter 15: Vector Calculus
    • 15.1: Vector Fields (4)
    • 15.2: Line Integrals (4)
    • 15.3: Path Independence and Conservative Vector Fields (2)
    • 15.4: Green's Theorem (4)
    • 15.5: Parametric Surfaces and Areas (2)
    • 15.6: Surface Integrals (6)
    • 15.7: Curl and Divergence
    • 15.8: Stokes's Theorem (4)
    • 15.9: The Divergence Theorem (4)

  • Chapter 16: Second-Order Differential Equations
    • 16.1: Second-Order Linear Homogeneous Equations
    • 16.2: Second-Order Linear Nonhomogeneous Equations
    • 16.3: Applications of Second-Order Differential Equations
    • 16.4: Infinite Series and Differential Equations


Power up your assignments with the WebAssign Calculus Tutorial Bank collection! Authored by the WebAssign Community of Teachers, this collection features 450 questions that cover the full Calculus curriculum, each featuring a multi-step tutorial that guides students to a deeper understanding of the skills and concepts. Ideal as extra problems for your assignments, or as extra practice for students, this new Additional Resource can be added to any WebAssign course at no additional cost.



Each question is available in two formats:

Stand-Alone Tutorial: Displays the full tutorial to students and assigns a point value for each part.

Pop-Up Tutorial: Presents students with a graded question and includes an ungraded interactive Tutorial as a supportive resource.

Question Group Key
Tut - Tutorial Question
Tut.SA - Stand Alone Tutorial


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Limits and Continuity
1.1 16 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 005a.Tut 005a.Tut.SA 006a.Tut 006a.Tut.SA
1.2 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA
1.3 14 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA 005a.Tut 005a.Tut.SA 006a.Tut 006a.Tut.SA 007a.Tut 007a.Tut.SA
1.4 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA 005a.Tut 005a.Tut.SA 005b.Tut 005b.Tut.SA
1.5 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA
Chapter 2: Differentiation
2.1 18 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 005a.Tut 005a.Tut.SA 005b.Tut 005b.Tut.SA 006a.Tut 006a.Tut.SA
2.2 14 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 005a.Tut 005a.Tut.SA
2.3 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
2.4 12 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
2.5 12 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA
2.6 14 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA 005a.Tut 005a.Tut.SA
2.7 8 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA
2.8 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA
2.9 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 003a.Tut 003a.Tut.SA
Chapter 3: Applications of Differentiation
3.1 12 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
3.2 20 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA 003d.Tut 003d.Tut.SA 004a.Tut 004a.Tut.SA
3.3 8 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA
3.4 20 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA 004a.Tut 004a.Tut.SA 005a.Tut 005a.Tut.SA 005b.Tut 005b.Tut.SA
3.5 4 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA
3.6 12 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA
3.7 20 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 005a.Tut 005a.Tut.SA 006a.Tut 006a.Tut.SA 007a.Tut 007a.Tut.SA
3.8 10 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
3.9 8 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
Chapter 4: Integration
4.1 16 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 005a.Tut 005a.Tut.SA 005b.Tut 005b.Tut.SA 006a.Tut 006a.Tut.SA
4.2 6 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA
4.3 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA
4.4 16 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA 004a.Tut 004a.Tut.SA 005a.Tut 005a.Tut.SA 006a.Tut 006a.Tut.SA
4.5 20 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 002d.Tut 002d.Tut.SA 002e.Tut 002e.Tut.SA 002f.Tut 002f.Tut.SA 002g.Tut 002g.Tut.SA 003a.Tut 003a.Tut.SA
Chapter 5: Integration Techniques
5.1 12 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
5.2 12 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA
5.3 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA
5.4 16 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 004c.Tut 004c.Tut.SA
5.5 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
5.6 6 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA
5.7 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA
5.8 10 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA
Chapter 6: Applications of Integration
6.1 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
6.2 2 001a.Tut 001a.Tut.SA
6.3 12 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA
6.4 12 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 004a.Tut 004a.Tut.SA
6.5 16 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA
6.6 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA
6.7 20 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 004c.Tut 004c.Tut.SA 004d.Tut 004d.Tut.SA
6.8 12 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 002d.Tut 002d.Tut.SA 002e.Tut 002e.Tut.SA
6.9 8 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
6.10 6 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA
Chapter 7: Differential Equations
7.1 6 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA
7.2 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA
7.3 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
7.4 8 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA
7.5 6 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA
7.6 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA
Chapter 8: Sequences and Series
8.1 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 001e.Tut 001e.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
8.2 10 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 003a.Tut 003a.Tut.SA
8.3 8 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA
8.4 8 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA
8.5 14 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA 003d.Tut 003d.Tut.SA
8.6 16 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA 003c.Tut 003c.Tut.SA
8.7 8 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA
8.8 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
8.9 28 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 002d.Tut 002d.Tut.SA 002e.Tut 002e.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA 004b.Tut 004b.Tut.SA 004c.Tut 004c.Tut.SA 004d.Tut 004d.Tut.SA
Chapter 9: Parametric Equations and Polar Coordinates
9.1 10 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA 002d.Tut 002d.Tut.SA
9.2 16 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA 003b.Tut 003b.Tut.SA
9.3 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA
9.4 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 001c.Tut 001c.Tut.SA 001d.Tut 001d.Tut.SA 002a.Tut 002a.Tut.SA
Chapter 10: Conic Sections
10.1 8 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 003a.Tut 003a.Tut.SA
10.3 10 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA 002a.Tut 002a.Tut.SA 002b.Tut 002b.Tut.SA 002c.Tut 002c.Tut.SA
Chapter 11: Vectors
11.1 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
11.2 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
11.3 4 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA
11.4 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
11.5 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
11.6 2 001a.Tut 001a.Tut.SA
Chapter 12: Vector-Valued Functions
12.1 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
12.2 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
12.3 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
12.4 8 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA 004a.Tut 004a.Tut.SA
Chapter 13: Partial Derivatives
13.1 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
13.2 2 001a.Tut 001a.Tut.SA
13.3 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
13.4 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
13.5 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
13.6 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
13.7 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
13.8 4 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA
Chapter 14: Multiple Integration
14.2 2 001a.Tut 001a.Tut.SA
14.3 4 001a.Tut 001a.Tut.SA 001b.Tut 001b.Tut.SA
14.4 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
14.6 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
14.8 2 001a.Tut 001a.Tut.SA
Chapter 15: Vector Calculus
15.1 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
15.2 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
15.3 2 001a.Tut 001a.Tut.SA
15.4 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
15.5 2 001a.Tut 001a.Tut.SA
15.6 6 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA 003a.Tut 003a.Tut.SA
15.8 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
15.9 4 001a.Tut 001a.Tut.SA 002a.Tut 002a.Tut.SA
Chapter 16: Second-Order Differential Equations
16 0  
Total 900