# Applied Calculus 1st edition

Frank C. Wilson and Scott Adamson
Publisher: Cengage Learning

## Cengage Unlimited

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$29.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Functions and Linear Models
• 1.1: Functions (25)
• 1.2: Linear Functions (25)
• 1.3: Linear Models (13)

• Chapter 2: Nonlinear Models
• 2.1: Quadratic Function Models (39)
• 2.2: Higher-Order Polynomial Function Models (21)
• 2.3: Exponential Function Models (25)
• 2.4: Logarithmic Function Models (28)
• 2.5: Choosing a Mathematical Model (12)

• Chapter 3: The Derivative
• 3.1: Average Rate of Change (33)
• 3.2: Limits and Instantaneous Rates of Change (26)
• 3.3: Limits and Continuity (18)
• 3.4: The Derivative as a Slope: Graphical Methods (22)
• 3.5: The Derivative as a Function: Algebraic Method (21)
• 3.6: Interpreting the Derivative (27)

• Chapter 4: Differentiation Techniques
• 4.1: Basic Derivative Rules (18)
• 4.2: The Product and Quotient Rules (14)
• 4.3: The Chain Rule (15)
• 4.4: Exponential and Logarithmic Rules (17)
• 4.5: Implicit Differentiation (12)

• Chapter 5: Derivative Applications
• 5.1: Maxima and Minima (21)
• 5.2: Applications of Maxima and Minima (28)
• 5.3: Concavity and the Second Derivative (27)
• 5.4: Related Rates (14)

• Chapter 6: The Integral
• 6.1: Indefinite Integrals (19)
• 6.2: Integration by Substitution (19)
• 6.3: Using Sums to Approximate Area (18)
• 6.4: The Definite Integral (22)
• 6.5: The Fundamental Theorem of Calculus (18)

• Chapter 7: Advanced Integration Techniques
• 7.1: Integration by Parts (19)
• 7.2: Area Between Two Curves (20)
• 7.3: Improper Integrals (16)

• Chapter 8: Multivariable Functions and Partial
• 8.1: Multivariable Functions (15)
• 8.2: Partial Derivatives (14)
• 8.3: Multivariable Maxima and Minima (13)
• 8.4: Constrained Maxima and Minima and Applications (9)

• Chapter 9: Trigonometric Functions
• 9.1: Trigonometric Functions, Equations, and Graphs (17)
• 9.2: Derivatives of Trigonometric Functions (19)
• 9.3: Integrals of Trigonometric Functions (28)

• Chapter 10: Differential Equations
• 10.1: Slope Fields (16)
• 10.2: Euler's Method (18)
• 10.3: Separable Differential Equations and Applications (19)
• 10.4: Differential Equations: Limited Growth and Logistic Models (20)
• 10.5: First-Order Linear Differential Equations (16)

• Chapter 11: Sequences and Series
• 11.1: Sequences (15)
• 11.2: Series and Convergence (13)
• 11.3: Taylor Polynomials (11)
• 11.4: Taylor Series (13)

• Chapter 12: Probability and Calculus
• 12.1: Continuous Probability Models (18)
• 12.2: Uniform and Exponential Distributions (20)
• 12.3: Expected Value, Variance, and Standard Deviation (21)
• 12.4: Normal Distributions (19)

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Functions and Linear Models
1.1 25 001 003 007.SBS 009 010 011 012 013 015 019 020 023 025 027 029 031 033 035 037 039 041 043 045 049 051
1.2 25 001 003 005.SBS 007 011 013 017 019 021 025 027 029 031 032 033 034 035 037 038 041 045 047 049 051 055
1.3 13 001 003 004 005 006 007 011 013 014 018 023 024 029.SBS
Chapter 2: Nonlinear Models
2.1 39 001 004 005 007 009 011 012.SBS 013 014 015 017 019 020 021 023 024 025 026 029 030 031 032 033 034 035 036 037 039 041 042 043 044 045 046 047 048 049 050 058
2.2 21 001 002 003 004 005 006 008 009 010 011.SBS 012 013 014 016 017 018 019 021 023 029 030
2.3 25 001 003 006 009 011 013 016 017 019 020 021 022 023 024 025 027 028 029 031 033 035 041 043 044 045
2.4 28 001.SBS 004 005 006 007 009 011 013 015 017 019 021 025 028 029 031 033 035 037 039 040 041 042 043 044 045 046 051
2.5 12 001.SBS 003 004 005 007 008 010 011 013 015 019 023
Chapter 3: The Derivative
3.1 33 001.SBS 003 004 007 009 011 012 013 014 015 016 017 018 019 020 021 023 023.alt 025 025.alt 027 029 031 032 033 034 035 036 037 038 039 040 047
3.2 26 001 003 007 009 011 013 017 019 021 023 027 029 031 032 033 034 035 036 037 038 039 040 041 043 045 050
3.3 18 001 003.SBS 007 009 011 013 015 017 019 021 023 027 029 031 032 033 035 037
3.4 22 001 003 005 007 009 011 012 013 015 017 018 019 020 021 023 025 026 027 028 029.SBS 030 039
3.5 21 001 003 007 009 011 013 015 019 021 023 025 027 028 029 030 031 032.SBS 033 034 035 042
3.6 27 001.SBS 003 004 005 007 009 011 012 013 014 015 017 018 019 020 021 022 023 024 025 026 027 028 029 030 037 040
Chapter 4: Differentiation Techniques
4.1 18 001 003.SBS 007 009 011 013 015 017 021 022 023 024 025 026 027 028 029 030
4.2 14 001 003 007 009 013 015 019 021 022 023 024 025 029.SBS 035
4.3 15 001 003 005 007.SBS 011 013 017 019 021 023 025 029 031 032 040
4.4 17 001 003 005 009 011 013 015 017 019 021 025 026 027 028 029 030 040.SBS
4.5 12 001 003 005 009 011 013 015 017 019 021 023 025.SBS
Chapter 5: Derivative Applications
5.1 21 001.SBS 003 005 009 011 013 015 017 019 021 023 025 029 031 033 037 041 042 043 044 045
5.2 28 001 002 003 004 005 006 007 008 009.SBS 010 011 012 013 014 015 016 017 019 020 021 022 023 024 025 026 028 029 039
5.3 27 001 003 007 009 011.SBS 013 015 017 019 021 023 025 027 029 031 035 037 039 041 042 044 045 047 049 050 051 067
5.4 14 001 003 007 009 011 012 013 014 015.SBS 016 017 018 019 020
Chapter 6: The Integral
6.1 19 001 007 009 011 015 017 019 021 023 025 029 030 031 033 035 036 037 039.SBS 040
6.2 19 001 003 007 009 011 015 017 021 023 025 027 029 031 033 035 037.SBS 038 039 046
6.3 18 001 003 007 009 011 013 015 017 019 021 023 025 027 029 031 036.SBS 039 040
6.4 22 001 003 007 009 011 013 017 019 021 023 025 027 029 031 033 035 039 041 042 043 045.SBS 047
6.5 18 001 003 007 009 011 013 015 017 019 021 025 027 029 031 033 034 035 041.SBS
7.1 19 001 003 007 009 011 013 015 017 019 021 023 026 027 028 029 030 031 035.SBS 037
7.2 20 003.SBS 007 009 011 013 015 017 019 021 022 023 024 025 026 027 028 029 031 033 037
7.3 16 001 003 007 009 011 013 015 017 019 021 026.SBS 027 028 029 030 038
Chapter 8: Multivariable Functions and Partial
8.1 15 001 003 007 009 011 012 013 014 015.SBS 017 018 019 020 021 026
8.2 14 001 003 007 009 011 013 015 017 018.SBS 019 020 021 023 035
8.3 13 001.SBS 003 007 009 011 013 015 017 019 021 023 025 026
8.4 9 001 003 007 009 011 012 013 014.SBS 015
Chapter 9: Trigonometric Functions
9.1 17 001 003 004 005 006 009 010 011 012 013 014 019 020.SBS 021 023 025 027
9.2 19 003 007 009 013 015 017 019 021 023 026 027 028 029 030 031 032 033 037 039.SBS
9.3 28 001 003 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 036 037 038 039 040 041 042 043.SBS 044 045 047
Chapter 10: Differential Equations
10.1 16 001 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022.SBS
10.2 18 001 003 005 007 011 013 014 015 016 017 019 020 021 022 023 024 025 031.SBS
10.3 19 001 003 007 009 011 015 017 019 021 022 023 024 025 026 027 028 029 031.SBS 036
10.4 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015.SBS 016 017 018 019 020
10.5 16 001 003 007.SBS 009 011 013 017 019 021 023 025 026 027 029 030 038
Chapter 11: Sequences and Series
11.1 15 001 003 007 009 011 013 015 016 017 018 019.SBS 021 023 025 035
11.2 13 001 003 007 009 017 019 021 023 025 026.SBS 027 028 034
11.3 11 003 007 009 011 013 015 019 021 023 025 031.SBS
11.4 13 001 003 007 009 011 013 015 017 019 021 023 025 031.SBS
Chapter 12: Probability and Calculus
12.1 18 001 003 005 007 009 011 013 015 017 019 021 022 023 024 025 026 027 034
12.2 20 001 003 007 009 011 013 014 015 016 017 018 019 020 021 022 023 024 025 026 034
12.3 21 001 003 007 009 011 013 015 017 019 021 022 023 024 025 027 028 029 030 031 032 033
12.4 19 001 003 007 009 011 013 015 017 018 019 021 022 023 024 025 026 027 028 030
Total 986