Differential Equations with Boundary-Value Problems 8th edition

Textbook Cover

Dennis Zill and Warren Wright
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A $100.00
High School N/A N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Introduction to Differential Equations
    • 1.1: Definitions and Terminology (17)
    • 1.2: Initial-Value Problems (18)
    • 1.3: Differential Equations as Mathematical Models (18)
    • 1: Review (20)

  • Chapter 2: First-Order Differential Equations
    • 2.1: Solution Curves Without a Solution (18)
    • 2.2: Separable Equations (20)
    • 2.3: Linear Equations (21)
    • 2.4: Exact Equations (19)
    • 2.5: Solutions by Substitutions (17)
    • 2.6: A Numerical Method (7)
    • 2: Review (18)

  • Chapter 3: Modeling With First-Order Differential Equations
    • 3.1: Linear Models (31)
    • 3.2: Nonlinear Models (15)
    • 3.3: Modeling with Systems of First-Order DEs (11)
    • 3: Review (6)

  • Chapter 4: Higher-Order Differential Equations
    • 4.1: Preliminary Theory-Linear Equations (14)
    • 4.2: Reduction of Order (12)
    • 4.3: Homogeneous Linear Equations with Constant Coefficients (30)
    • 4.4: Undetermined Coefficients-Superposition Approach (23)
    • 4.5: Undetermined Coefficients-Annihilator Approach (34)
    • 4.6: Variation of Parameters (15)
    • 4.7: Cauchy-Euler Equation (21)
    • 4.8: Green's Functions (21)
    • 4.9: Solving Systems of Linear DEs by Elimination (12)
    • 4.10: Nonlinear Differential Equations (9)
    • 4: Review (28)

  • Chapter 5: Modeling With Higher-Order Differential Equations
    • 5.1: Linear Models: Initial-Value Problems (22)
    • 5.2: Linear Models: Boundary-Value Problems (18)
    • 5.3: Nonlinear Models (6)
    • 5: Review (4)

  • Chapter 6: Series Solutions of Linear Equations
    • 6.1: Review of Power Series (16)
    • 6.2: Solutions About Ordinary Points (12)
    • 6.3: Solutions About Singular Points (17)
    • 6.4: Special Functions (13)
    • 6: Review (13)

  • Chapter 7: The Laplace Transform
    • 7.1: Definition of the Laplace Transform (20)
    • 7.2: Inverse Transforms and Transforms of Derivatives (22)
    • 7.3: Operational Properties I (36)
    • 7.4: Operational Properties II (29)
    • 7.5: The Dirac Delta Function (8)
    • 7.6: Systems of Linear Differential Equations (10)
    • 7: Review (35)

  • Chapter 8: Systems of Linear First-Order Differential Equations
    • 8.1: Preliminary Theory_Linear Systems (12)
    • 8.2: Homogeneous Linear Systems (21)
    • 8.3: Nonhomogeneous Linear Systems (18)
    • 8.4: Matrix Exponential (8)
    • 8: Review (15)

  • Chapter 9: Numerical Solutions of Ordinary Differential Equations
    • 9.1: Euler Methods and Error Analysis (8)
    • 9.2: Runge-Kutta Methods (8)
    • 9.3: Multistep Methods (4)
    • 9.4: Higher-Order Equations and Systems (6)
    • 9.5: Second-Order Boundary-Value Problems (6)
    • 9: Review (8)

  • Chapter 10: Plane Autonomous Systems
    • 10.1: Autonomous Systems (12)
    • 10.2: Stability of Linear Systems (10)
    • 10.3: Linearization and Local Stability (9)
    • 10.4: Autonomous Systems as Mathematical Models (6)
    • 10: Review (11)

  • Chapter 11: Fourier Series
    • 11.1: Orthogonal Functions (8)
    • 11.2: Fourier Series (9)
    • 11.3: Fourier Cosine and Sine Series (14)
    • 11.4: Sturm-Liouville Problem (4)
    • 11.5: Bessel and Legendre Series (5)
    • 11: Review (14)

  • Chapter 12: Boundary-Value Problems in Rectangular Coordinates
    • 12.1: Separable Partial Differential Equations (12)
    • 12.2: Classical PDEs and Boundary-Value Problems (5)
    • 12.3: Heat Equation (5)
    • 12.4: Wave Equation (9)
    • 12.5: Laplace's Equation (9)
    • 12.6: Nonhomogeneous Boundary-Value Problems (7)
    • 12.7: Orthogonal Series Expansions (4)
    • 12.8: Higher-Dimensional Problems (3)
    • 12: Review (9)

  • Chapter 13: Boundary-Value Problems in Other Coordinate Systems
    • 13.1: Polar Coordinates (5)
    • 13.2: Polar and Cylindrical Coordinates (5)
    • 13.3: Spherical Coordinates (5)
    • 13: Review (5)

  • Chapter 14: Integral Transforms
    • 14.1: Error Function (3)
    • 14.2: Laplace Transform (7)
    • 14.3: Fourier Integral (6)
    • 14.4: Fourier Transforms (6)
    • 14: Review (7)

  • Chapter 15: Numerical Solutions of Partial Differential Equations
    • 15.1: Laplace's Equation (4)
    • 15.2: Heat Equation (4)
    • 15.3: Wave Equation (4)
    • 15: Review (3)

  • Chapter A: Appendix
    • A.1: Gamma Function (4)
    • A.2: Matrices (56)
    • A.3: Laplace Transforms


Differential Equations with Boundary-Value Problems, 8th edition provides a thorough treatment of boundary-value problems and partial differential equations. This proven and accessible book speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. The WebAssign component for this text engages students with immediate feedback, an interactive eBook, and a question bank of end-of-section exercises.

Features

  • Read It links under each question quickly jump to the corresponding section of a complete, interactive eBook that lets students highlight and take notes as they read.
  • Lifetime of Edition option is available, giving your students unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.
  • WebAssign's patent-pending grading engine uses a series of robust grading routines customized for each exercise to accept all correct answers for the same complex question. Read our Answer Evaluation and Grading System report to learn more.
Use the Textbook Edition Upgrade Tool to automatically update assignments from this title to corresponding questions in the newest edition of this textbook.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter A: Appendix
A.1 4 001 002 003 004
A.2 56 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056
Chapter 1: Introduction to Differential Equations
1.R 20 001 002 003 004 005 006 007 008 009 010 011 012 015 016 017 019 020 022 035 036
1.1 17 001 003 005 007 009 011 013 015 017 019 023 027 033 041 050 054 056
1.2 18 001 003 007 009 011 013 015 017 019 021 023 025 033 034 037 039 041 043
1.3 18 001 002 005 006 007 008 009 010 013 014 015 016 017 018 023 025 026 027
Chapter 2: First-Order Differential Equations
2.R 18 001 002 013 014 015 016 018 019 021 022 023 024 025 026 027 028 029 032
2.1 18 001 003 004 005 007 009 010 011 013 014 019 021 023 025 027 031 038 040
2.2 20 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 036 041 047 049 055
2.3 21 001 003 005 007 009 011 013 015 017 019 021 023 024 025 027 029 031 033 039 042 047
2.4 19 001 003 005 007 009 010 011 013 015 017 019 021 023 025 027 029 031 033 035
2.5 17 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 036 038
2.6 7 001 003 005 007 009 011 012
Chapter 3: Modeling With First-Order Differential Equations
3.R 6 004 005 006 009 011 012
3.1 31 001 002 003 004 005 006 007 009 010 011 012 013 014 015 016 017 019 020 021 022 023 026 029 031 033 035 037 039 041 043 046
3.2 15 001 002 003 004 006 008 009 010 011 013 015 017 019 021 027
3.3 11 001 002 004 005 006 007 008 009 010 011 013
Chapter 4: Higher-Order Differential Equations
4.R 28 001 002 003 004 011 012 015 016 017 018 019 022 023 024 026 027 028 029 030 031 035 037 038 039 040 043 044 045
4.1 14 001 004 009 013 015 017 019 021 023 025 027 029 036 040
4.2 12 001 003 005 007 009 011 013 015 016 017 019 022
4.3 30 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 037 039 041 043 045 047 049 051 053 055 057 061
4.4 23 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 037 039 041 045 047
4.5 34 001 003 005 007 009 015 017 019 021 023 025 027 029 031 033 035 037 039 041 043 045 047 049 051 053 055 057 059 061 063 065 067 069 071
4.6 15 001 003 005 007 009 011 013 015 017 019 021 023 025 027 030
4.7 21 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 037 039 041
4.8 21 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 039 041 043
4.9 12 001 003 005 007 009 011 013 015 017 019 021 023
4.10 9 003 005 007 009 011 013 015 017 019
Chapter 5: Modeling With Higher-Order Differential Equations
5.R 4 011 014 015 021
5.1 22 001 003 005 006 008 015 017 019 021 023 025 027 029 030 031 033 037 045 047 049 053 057
5.2 18 001 003 005 007 009 010 011 012 013 014 015 016 017 018 019 025 027 037
5.3 6 001 003 007 009 016 017
Chapter 6: Series Solutions of Linear Equations
6.R 13 001 002 003 005 006 009 010 013 015 016 017 019 020
6.1 16 001 003 005 007 009 011 013 015 017 021 023 025 027 029 035 037
6.2 12 001 005 007 009 011 013 015 017 019 021 023 025
6.3 17 001 003 005 006 007 009 011 013 015 017 019 021 023 025 027 031 032
6.4 13 001 003 005 007 009 011 013 015 017 019 023 024 047
Chapter 7: The Laplace Transform
7.R 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 020 021 022 025 026 027 028 029 030 031 032 033 034 039 040 041 042 043
7.1 20 001 003 005 007 009 011 013 015 017 019 021 023 025 027 031 033 035 037 039 051
7.2 22 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 035 037 039 041 044
7.3 36 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 037 039 041 043 045 047 049 053 055 057 059 061 063 065 067 069 071 073 077
7.4 29 001 003 005 007 009 011 013 015 017 019 021 023 025 027 029 031 033 037 039 041 043 045 047 049 051 053 057 063 066
7.5 8 001 003 005 007 009 011 013 014
7.6 10 001 003 005 007 009 011 013 015 017 019
Chapter 8: Systems of Linear First-Order Differential Equations
8.R 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
8.1 12 001 003 005 007 009 011 013 015 017 019 021 023
8.2 21 001 003 005 007 009 011 013 015 019 021 023 025 027 029 033 035 037 039 041 043 045
8.3 18 001 003 005 007 009 010 011 014 015 017 019 021 023 025 027 029 031 033
8.4 8 001 003 005 007 009 012 015 017
Chapter 9: Numerical Solutions of Ordinary Differential Equations
9.R 8 001 002 003 004 005 006 007 008
9.1 8 001 003 005 007 009 011 012 017
9.2 8 001 003 005 007 009 011 013 015
9.3 4 003 004 005 007
9.4 6 001 003 006 007 009 011
9.5 6 001 003 005 007 009 012
Chapter 10: Plane Autonomous Systems
10.R 11 001 002 003 004 005 006 007 008 013 014 017
10.1 12 001 003 005 007 009 011 013 015 019 021 023 024
10.2 10 001 005 007 009 011 013 015 017 020 023
10.3 9 003 006 009 011 016 021 024 036 037
10.4 6 001 004 010 011 016 019
Chapter 11: Fourier Series
11.R 14 001 002 003 004 005 006 007 008 010 013 014 015 016 018
11.1 8 001 003 005 007 009 011 018 021
11.2 9 001 003 005 007 009 011 013 015 018
11.3 14 001 003 005 007 011 013 015 018 025 029 033 035 041 045
11.4 4 001 007 009 011
11.5 5 001 007 009 015 021
Chapter 12: Boundary-Value Problems in Rectangular Coordinates
12.R 9 001 003 005 007 008 009 012 013 014
12.1 12 001 003 005 007 009 012 015 017 019 021 023 025
12.2 5 001 003 005 007 009
12.3 5 001 002 004 005 007
12.4 9 001 002 003 004 005 007 009 011 015
12.5 9 001 003 005 007 009 011 013 015 016
12.6 7 001 003 005 007 010 013 017
12.7 4 002 003 004 007
12.8 3 001 003 005
Chapter 13: Boundary-Value Problems in Other Coordinate Systems
13.R 5 001 002 003 004 005
13.1 5 001 006 008 009 013
13.2 5 003 007 012 013 014
13.3 5 001 005 009 010 011
Chapter 14: Integral Transforms
14.R 7 001 002 004 006 007 008 013
14.1 3 006 007 009
14.2 7 003 009 011 014 021 022 025
14.3 6 001 003 007 011 013 017
14.4 6 002 005 010 013 015 019
Chapter 15: Numerical Solutions of Partial Differential Equations
15.R 3 001 002 003
15.1 4 001 003 005 006
15.2 4 001 006 011 012
15.3 4 001 004 005 006
Total 1159