## Rotational Equilibrium Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

Procedure A: Balancing torques
Position of center of mass of meter stick $=$ $\qquad$

## Data Table 1

|  | Mass (g) | Lever arm <br> $(\mathrm{cm})$ | Torque $\left(\mathrm{g} \cdot \mathrm{cm}^{2} / \mathrm{s}^{2}\right)$ <br> (include sign) |
| :---: | :---: | :---: | :---: |
| $m_{1}$ |  |  |  |
| $m_{2}$ |  |  |  |
| $m_{3}$ |  |  | predicted $=$ |

Predicted value of $x_{3}=$ $\qquad$
Experimental value of $x_{3}=$ $\qquad$
Percent difference between predicted and experimental values of $x_{3}=\ldots \quad \%$
Are the predicted and experimental values of $x_{3}$ in close agreement? (A difference of $\pm 3 \%$ would be considered acceptable in this situation.)

Circle one: Yes No

CHECKPOINT 1: Set-up and calculations

Procedure B: Finding the Mass of the Meter Stick
Draw a sketch of the experimental set-up with appropriate labels in the space below.

## Data Table 2

|  | Mass (g) <br> $(\mathrm{g})$ | Lever Arm | Torque $\left(\mathrm{g} \cdot \mathrm{cm}^{2} / \mathrm{s}^{2}\right)$ <br> (include sign) |
| :---: | :---: | :---: | :---: |
| $m_{1}$ |  |  |  |
| $m_{2}$ |  |  | predicted $=$ |

Predicted value of mass of meter stick: $m_{2, \text { predicted }}=$ $\qquad$
Experimental value of mass of meter stick: $m_{2, \exp }=$ $\qquad$
Percent difference between $m_{2, \text { predicted }}$ and $m_{2, \exp }=\ldots \quad \%$
Are the predicted and experimental values of $m_{3}$ in close agreement? (A difference of $\pm 3 \%$ would be considered acceptable in this situation.)

Circle one: Yes No

CHECKPOINT 2: Diagram, uncertainty formula, set-up, and calculations

Procedure C: Determining an unknown mass

Draw a sketch of the experimental set-up with appropriate labels in the space below.

## Data Table 3

|  | Mass (g) <br> $(\mathrm{g})$ | Lever Arm <br> $x(\mathrm{~cm})$ | Torque $\left(\mathrm{g} \cdot \mathrm{cm}^{2} / \mathrm{s}^{2}\right)$ <br> (include sign) |
| :---: | :---: | :---: | :---: |
| $m_{1}$ |  |  |  |
| $m_{2}$ |  |  |  |
| $m_{3}$ |  |  | predicted $=$ |

Predicted value of mass of shot plus bucket: $m_{3, \text { predicted }}=$ $\qquad$

Experimental value of mass of shot plus bucket: $m_{3, \exp }=$ $\qquad$

Percent difference between $m_{3, \text { predicted }}$ and $m_{3, \exp }=\ldots \quad \%$
Are the predicted and experimental values of $m_{3}$ in close agreement? (A difference of $\pm 10 \%$ would be considered acceptable in this situation.)

Circle one: Yes No

CHECKPOINT 3: Diagram, set-up, and calculations

