$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(9+\frac{2 i}{n}\right)^{12}$ can be interpreted as the area of the region lying under the graph of $y=(9+x)^{12}$ on the interval $[0,2]$, since for $y=(9+x)^{12}$ on $[0,2]$ with $\Delta x=\frac{2-0}{n}=\frac{2}{n}, x_{i}=0+i \Delta x=\frac{2 i}{n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(9+\frac{2 i}{n}\right)^{12} \frac{2}{n}
$$

Note that the answer is not unique. We could use $y=x^{12}$ on $[9,11]$ or, in general, $y=((9-n)+x)^{12}$ on $[n, n+2]$.

