$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{8 n} \tan \frac{i \pi}{8 n}$ can be interpreted as the area of the region lying under the graph of $y=\tan x$ on the interval $\left[0, \frac{\pi}{8}\right]$, since for $y=\tan x$ on $\left[0, \frac{\pi}{8}\right]$ with $\Delta x=\frac{\pi / 8-0}{n}=\frac{\pi}{8 n}, x_{i}=0+i \Delta x=\frac{i \pi}{8 n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \tan \left(\frac{i \pi}{8 n}\right) \frac{\pi}{8 n}
$$

Note that this answer is not unique, since the expression for the area is the same for the function $y=\tan (x-k \pi)$ on the interval $\left[k \pi, k \pi+\frac{\pi}{8}\right]$, where k is any integer.

