The vertex of the first parabola is $(8,0)$, so an equation is $y=a(x-8)^{2}+0$. Since the point $(9,2)$ is on the
parabola, we'll substitute 9 for x and 2 for y to find a. $2=a(9-8)^{2} \Rightarrow$ $a=2$, so the equation is $f(x)=2(x-8)^{2}$.

The y-intercept of the second parabola is $(0,1)$, so an equation is $y=$ $a x^{2}+b x+1$. Since the points $(-2,2)$ and $(1,-2.5)$ are on the parabola, we'll substitute -2 for x and 2 for y as well as 1 for x and -2.5 for y to obtain two equations with the unknowns a and b.

$$
\begin{array}{ll}
(-2,2): & 2=4 a-2 b+1 \Rightarrow 4 a-2 b=1 \\
(1,-2.5): & -2.5=a+b+1 \Rightarrow a+b=-3.5 \tag{2}
\end{array}
$$

$2 \cdot(2)+(1)$ gives us $6 a=-6 \quad \Rightarrow \quad a=-1$. From (2), $-1+b=-3.5 \quad \Rightarrow$ $b=-2.5$, so the equation is $g(x)=-x^{2}-2.5 x+1$.

