(a) The radius r of the balloon is increasing at a rate of $8 \mathrm{~cm} / \mathrm{s}$, so $r(t)=$ $(8 \mathrm{~cm} / \mathrm{s})(t \mathrm{~s})=8 t($ in cm$)$.
(b) Using $V=\frac{4}{3} \pi r^{3}$, we get $(V \circ r)(t)=V(r(t))=V(8 t)=\frac{4}{3} \pi(8 t)^{3}$. The result, $V=\frac{4}{3} \pi(8 t)^{3}$, gives the volume of the balloon (in cm^{3}) as a function of time (in s).

