$h(-x)=f(g(-x))=f(-g(x))$. At this point, we can't simplify the expression, so we might try to find a counterexample to show that h is not an odd function. Let $g(x)=x$, an odd function, and $f(x)=x^{2}+x$. Then $h(x)=x^{2}+x$, which is neither even nor odd.

Now suppose f is an odd function. Then $f(-g(x))=-f(g(x))=-h(x)$. Hence, $h(-x)=-h(x)$, and so h is odd if both f and g are odd.

Now suppose f is an even function. Then $f(-g(x))=f(g(x))=h(x)$. Hence, $h(-x)=h(x)$, and so h is even if g is odd and f is even.

