(a) $x(t)=8 \cos t \Rightarrow v(t)=x^{\prime}(t)=-8 \sin t$ $\Rightarrow \quad a(t)=x^{\prime \prime}(t)=-8 \cos t$
(b) The mass at time $t=\frac{5 \pi}{6}$ has position $x\left(\frac{5 \pi}{6}\right)=8 \cos \frac{5 \pi}{6}=-4 \sqrt{3}$, velocity $v\left(\frac{5 \pi}{6}\right)=-8 \sin \frac{5 \pi}{6}=-4$, and acceleration $a\left(\frac{5 \pi}{6}\right)=-8 \cos \frac{5 \pi}{6}=4 \sqrt{3}$. Since $v\left(\frac{5 \pi}{6}\right)<0$, the particle is moving to the left.

