$$
\begin{aligned}
y & =\frac{r}{\sqrt{r^{2}+5}} \Rightarrow \\
y^{\prime} & =\frac{\sqrt{r^{2}+5}(1)-r \cdot \frac{1}{2}\left(r^{2}+5\right)^{-1 / 2}(2 r)}{\left(\sqrt{r^{2}+5}\right)^{2}}=\frac{\sqrt{r^{2}+5}-\frac{r^{2}}{\sqrt{r^{2}+5}}}{\left(\sqrt{r^{2}+5}\right)^{2}} \\
& =\frac{\frac{\sqrt{r^{2}+5} \sqrt{r^{2}+5}-r^{2}}{\sqrt{r^{2}+5}}}{\left(\sqrt{r^{2}+5}\right)^{2}}=\frac{\left(r^{2}+5\right)-r^{2}}{\left(\sqrt{r^{2}+5}\right)^{3}}=\frac{5}{\left(r^{2}+5\right)^{3 / 2}} \\
& \text { or } 5\left(r^{2}+5\right)^{-3 / 2}
\end{aligned}
$$

Another solution: Write y as a product and make use of the Product Rule. $y=r\left(r^{2}+5\right)^{-1 / 2} \quad \Rightarrow$ $y^{\prime}=r \cdot\left(-\frac{1}{2}\right)\left(r^{2}+5\right)^{-3 / 2}(2 r)+\left(r^{2}+5\right)^{-1 / 2} \cdot 1=\left(r^{2}+5\right)^{-3 / 2}\left[-r^{2}+\left(r^{2}+5\right)^{1}\right]=$ $\left(r^{2}+5\right)^{-3 / 2}(5)=5\left(r^{2}+5\right)^{-3 / 2}$.
The step that students usually have trouble with is factoring out $\left(r^{2}+5\right)^{-3 / 2}$. But this is no different than factoring out x^{2} from $x^{2}+x^{5}$; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this case, $-\frac{3}{2}$ is smaller than $-\frac{1}{2}$.

