$\int_{-9}^{0}\left(2+\sqrt{81-x^{2}}\right) d x$ can be interpreted as the area under the graph of $f(x)=2+\sqrt{81-x^{2}}$ between $x=-9$ and $x=0$. This is equal to onequarter the area of the circle with radius 9 , plus the area of the rectangle, so $\int_{-9}^{0}\left(2+\sqrt{81-x^{2}}\right) d x=\frac{1}{4} \pi \cdot 9^{2}+2 \cdot 9=18+\frac{81}{4} \pi$.

