(a) Using the right endpoints to approximate $\int_{3}^{9} f(x) d x$, we have

$$
\sum_{i=1}^{3} f\left(x_{i}\right) \Delta x=2[f(5)+f(7)+f(9)]=2(-0.6+0.7+1.8)=3.8
$$

Since f is increasing, using right endpoints gives an overestimate.
(b) Using the left endpoints to approximate $\int_{3}^{9} f(x) d x$, we have $\sum_{i=1}^{3} f\left(x_{i-1}\right) \Delta x=2[f(3)+f(5)+f(7)]=2(-3.5-0.6+0.7)=-6.8$. Since f is increasing, using left endpoints gives an underestimate.
(c) Using the midpoint of each interval to approximate $\int_{3}^{9} f(x) d x$, we have $\sum_{i=1}^{3} f\left(\bar{x}_{i}\right) \Delta x=2[f(4)+f(6)+f(8)]=2(-2.3+0.3+1.5)=-1$.
We cannot say anything about the midpoint estimate compared to the exact value of the integral.

