(a) $\quad R_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{\pi / 2-0}{4}=\frac{\pi}{8}\right]=\left[\sum_{i=1}^{4} f\left(x_{i}\right)\right] \Delta x$

$$
=\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \Delta x
$$

$$
=5\left[\cos \frac{\pi}{8}+\cos \frac{2 \pi}{8}+\cos \frac{3 \pi}{8}+\cos \frac{4 \pi}{8}\right] \frac{\pi}{8}
$$

$$
\approx 5(0.9239+0.7071+0.3827+0) \frac{\pi}{8} \approx 3.953831301
$$

Since f is decreasing on $[0, \pi / 2]$, an underestimate is obtained by using the right endpoint approximation, R_{4}.

(b) $\quad L_{4}=\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x=\left[\sum_{i=1}^{4} f\left(x_{i-1}\right)\right] \Delta x$

$$
=\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \Delta x
$$

$$
=5\left[\cos 0+\cos \frac{\pi}{8}+\cos \frac{2 \pi}{8}+\cos \frac{3 \pi}{8}\right] \frac{\pi}{8}
$$

$$
\approx 5(1+0.9239+0.7071+0.3827) \frac{\pi}{8} \approx 5.91732671
$$

L_{4} is an overestimate. Alternatively, we could just add the area of the leftmost upper rectangle and subtract the area of the rightmost lower rectangle; that is, $L_{4}=R_{4}+f(0) \cdot \frac{\pi}{8}-f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{8}$.

