$V=l w h \quad \Rightarrow \quad 10=(2 w)(w) h=2 w^{2} h$, so $h=5 / w^{2}$.
The cost is $10\left(2 w^{2}\right)+6[2(2 w h)+2(h w)]=20 w^{2}+36 w h$, so
$C(w)=20 w^{2}+36 w\left(5 / w^{2}\right)=20 w^{2}+180 / w$.
$C^{\prime}(w)=40 w-180 / w^{2}=40\left(w^{3}-\frac{9}{2}\right) / w^{2} \quad \Rightarrow \quad w=\sqrt[3]{\frac{9}{2}}$ is the critical number. There is an absolute minimum for C when $w=\sqrt[3]{\frac{9}{2}}$ since $C^{\prime}(w)<0$
for $0<w<\sqrt[3]{\frac{9}{2}}$ and $C^{\prime}(w)>0$ for $w>\sqrt[3]{\frac{9}{2}}$.
$C\left(\sqrt[3]{\frac{9}{2}}\right)=20\left(\sqrt[3]{\frac{9}{2}}\right)^{2}+\frac{180}{\sqrt[3]{9 / 2}} \approx \$ 163.54$.

