$f(x)=x+\frac{1}{x}, \quad D=\{x \mid x \neq 0\} ; \quad g(x)=\frac{x+17}{x+2}, \quad D=\{x \mid x \neq-2\}$
(a) $(f \circ g)(x)=f(g(x))=f\left(\frac{x+17}{x+2}\right)=\frac{x+17}{x+2}+\frac{1}{\frac{x+17}{x+2}}=\frac{x+17}{x+2}+\frac{x+2}{x+17}$

Since $g(x)$ is not defined for $x=-2$ and $f(g(x))$ is not defined for $x=-17$ and $x=-2$, the domain of $(f \circ g)(x)$ is $D=\{x \mid x \neq-17,-2\}$.
(b) $(g \circ f)(x)=g(f(x))=g\left(x+\frac{1}{x}\right)=\frac{\left(x+\frac{1}{x}\right)+17}{\left(x+\frac{1}{x}\right)+2}=\frac{x^{2}+17 x+1}{x^{2}+2 x+1}$

Since $f(x)$ is not defined for $x=0$ and $g(f(x))$ is not defined for $x=-1$, the domain of $(g \circ f)(x)$ is $D=\{x \mid x \neq-1,0\}$.
(c) $\quad(f \circ f)(x)=f(f(x))=f\left(x+\frac{1}{x}\right)=\left(x+\frac{1}{x}\right)+\frac{1}{x+\frac{1}{x}}=x+\frac{1}{x}+\frac{x}{x^{2}+1}, \quad D=\{x \mid x \neq 0\}$
(d) $(g \circ g)(x)=g(g(x))=g\left(\frac{x+17}{x+2}\right)=\frac{\frac{x+17}{x+2}+17}{\frac{x+17}{x+2}+2}=\frac{6 x+17}{x+7}$

Since $g(x)$ is not defined for $x=-2$ and $g(g(x))$ is not defined for $x=-7$, the domain of $(g \circ g)(x)$ is $D=\{x \mid x \neq-2,-7\}$.

