$f(x)=\sqrt{x}, \quad D=[0, \infty) ; \quad g(x)=\sqrt[3]{8-x}, \quad D=\mathbb{R}$.
(a) $(f \circ g)(x)=f(g(x))=f(\sqrt[3]{8-x})=\sqrt{\sqrt[3]{8-x}}=\sqrt[6]{8-x}$.

The domain of $f \circ g$ is $\{x \mid \sqrt[3]{8-x} \geq 0\}=\{x \mid 8-x \geq 0\}=\{x \mid$ $x \leq 8\}=(-\infty, 8]$.
(b) $(g \circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt[3]{8-\sqrt{x}}$.

The domain of $g \circ f$ is $\{x \mid x$ is in the domain of f and $f(x)$ is in the domain of $g\}$. This is the domain of f, that is, $[0, \infty)$.
(c) $(f \circ f)(x)=f(f(x))=f(\sqrt{x})=\sqrt{\sqrt{x}}=\sqrt[4]{x}$. The domain of $f \circ f$ is $\{x \mid x \geq 0$ and $\sqrt{x} \geq 0\}=[0, \infty)$.
(d) $(g \circ g)(x)=g(g(x))=g(\sqrt[3]{8-x})=\sqrt[3]{8-\sqrt[3]{8-x}}$, and the domain is $(-\infty, \infty)$.

