Equilibrium and Le Châtelier’s Principle PreLab Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

Data Table A: Observations for the Equilibrium: $\text{Fe}^{3+} + \text{SCN}^- \rightleftharpoons \text{FeSCN}^{2+}$

<table>
<thead>
<tr>
<th>Well #</th>
<th>Stress Applied</th>
<th>Observations Upon Applying Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None; control for comparison</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Add 0.10 M Fe(NO$_3$)$_3$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Add 0.05 M NaSCN</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Add 0.10 M AgNO$_3$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Add 1.0 M NaNO$_3$</td>
<td></td>
</tr>
</tbody>
</table>

Question 1: When Fe(NO$_3$)$_3$ was added to the system,

a. Which ion in the equilibrium system caused the “stress”?

b. Which way did the equilibrium shift?

c. What happened to the concentration of SCN$^-$?

d. What happened to the concentration of FeSCN$^{2+}$?

Question 2: When NaSCN was added to the system,

a. Which ion in the equilibrium system caused the “stress”?

b. Which way did the equilibrium shift?

c. What happened to the concentration of Fe$^{3+}$?

d. What happened to the concentration of FeSCN$^{2+}$?

Question 3: When AgNO$_3$ was added to the system, it caused the precipitation of solid AgSCN.

a. Which ion in the equilibrium had its concentration changed by addition of AgNO$_3$?

b. Did the concentration of that ion increase or decrease?

c. When AgNO$_3$ was added, which way did the equilibrium shift?

Question 4: When you added NaNO$_3$, did anything happen? Can you explain this result?

Data Table B: Observations for the Equilibrium: CoCl$_4^{2-}$ + 6 H$_2$O \rightleftharpoons Co(H$_2$O)$_6^{2+}$ + 4 Cl$^-$

<table>
<thead>
<tr>
<th>Exp’t</th>
<th>Stress Applied</th>
<th>Observations Upon Applying Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well 1A</td>
<td>Add 12 M HCl</td>
<td></td>
</tr>
<tr>
<td>Well 1B</td>
<td>Add water</td>
<td></td>
</tr>
<tr>
<td>Well 2A</td>
<td>Add 12 M HCl</td>
<td></td>
</tr>
<tr>
<td>Well 2B</td>
<td>Add 0.10 M AgNO$_3$</td>
<td></td>
</tr>
<tr>
<td>Beaker 1</td>
<td>Heat Solution</td>
<td></td>
</tr>
<tr>
<td>Beaker 2</td>
<td>Cool Solution</td>
<td></td>
</tr>
</tbody>
</table>
Question 5: Adding HCl has the effect of adding Cl\(^-\) ions to the system. When Cl\(^-\) was added to the system,

a. Which way did the equilibrium shift?

b. What happened to the concentration of CoCl\(_4\)\(^{2-}\)?

c. What happened to the concentration of Co(H\(_2\)O)\(_6\)\(^{2+}\)?

Question 6: When water was added to the system,

a. Which way did the equilibrium shift?

b. What happened to the concentration of CoCl\(_4\)\(^{2-}\)?

c. What happened to the concentration of Co(H\(_2\)O)\(_6\)\(^{2+}\)?

Question 7: When you added AgNO\(_3\), it caused the precipitation of solid AgCl.

a. Which ion in the equilibrium had its concentration changed by addition of AgNO\(_3\)?

b. Did the concentration of that ion increase or decrease?

c. When AgNO\(_3\) was added, which way did the equilibrium shift?

Question 8: State a general rule concerning a system at equilibrium when more of one of the components is added.
Question 9: State a general rule concerning a system at equilibrium when one of the components is removed.

Question 10: For the $\text{CoCl}_4^{2-} + 6 \text{H}_2\text{O} \rightleftharpoons \text{Co(H}_2\text{O)}_6^{2+} + 4 \text{Cl}^- \quad \text{Equilibrium}$

a. Which way did the equilibrium shift upon heating?

b. Which way did the equilibrium shift upon cooling?

c. A general rule concerning temperature changes to equilibrium systems is that the input of energy (raising the temperature) shifts the equilibrium to the higher energy side of the equilibrium. Based on your observations, which side of the equilibrium is the higher energy side?

d. Is the reaction, $\text{CoCl}_4^{2-} + 6 \text{H}_2\text{O} \rightleftharpoons \text{Co(H}_2\text{O)}_6^{2+} + 4 \text{Cl}^-$ endothermic or exothermic?

Data Table C: Observations and Measurements for Bromothymol Blue Equilibrium

<table>
<thead>
<tr>
<th>Buffer pH</th>
<th>Solution Color</th>
<th>Absorbance at \sim635 nm</th>
<th>Absorbance at \sim470 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 11a: In the series from pH 6.30 to 6.80 to 7.30, the pH is increasing and the $[\text{H}_3\text{O}^+]$ is decreasing. As the $[\text{H}_3\text{O}^+]$ decreases, what happens to the concentration of BB$^-$ at \sim635 nm?
Question 11b: Explain how this observation agrees with Le Châtelier’s principle.

Question 12a: As the $[\text{H}_3\text{O}^+]$ decreases, what happens to the concentration of HBB at ~ 470 nm?

Question 12b: Explain how this observation agrees with Le Châtelier’s principle.

Question 13: What is the equilibrium expression for the reaction under study?

$$\text{HBB}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \rightleftharpoons \text{BB}^- + \text{H}_3\text{O}^+ (\text{aq})$$

Yellow \Rightarrow Blue

$A_{\text{max}} \sim 470\text{nm}$ \hspace{1cm} $A_{\text{max}} \sim 635\text{nm}$