Name Lab Partner
TA Name Date

Chemical Kinetics PreLab Worksheet

1a. Select the hazardous chemical associated with this experiment.

- $\hfill\square$ elemental iodine
- $\hfill\square$ ammonium sulfate
- \Box sodium persulfate
- \Box potassium sulfate
- $\hfill\square$ sodium thiosulfate

1b. Select the hazard associated with this chemical.

- \Box irritant (causes redness in the skin and eyes)
- □ oxidizing agent (supplies its own oxygen and reacts violently)
- \Box corrosive solution (causes degradation of skin upon contact)
- \Box source of irritating vapor (causes redness in the eyes and lungs)
- \Box reducing agent (reacts violently with water)
- 1c. In this lab, the chemical can be handled safely because
 - \Box it is a solid dispersed in inert powder.
 - \Box it will be in a dropper bottle.
 - \Box it is a dilute solution.
 - \Box it is in a sealed container.
 - \Box it will be used under an inert atmosphere.
- 2. What action should you take if you spill these materials on yourself?

3. Select the appropriate answer to the question below. The wastes in this experiment should be

 \Box kept in a labeled beaker at the bench, then dumped in the waste container on the side shelf at the end of lab.

- \Box thrown in the trash can.
- \Box flushed down the sink with water.
- \Box saved for next weeks experiment.

4. The three reactions of importance for this experiment are shown below. The last reaction produces a color change that will be monitored during the experiment. Please put a square around the reaction whose rate law being investigated. Please select the chemical species that, when depleted, allows the color change to take place.

$$\begin{array}{rcl} 2 \ \mathrm{I}^- + \mathrm{S}_2 \mathrm{O}_8^{2-} & \rightarrow & \mathrm{I}_2 + \mathrm{SO}_4^{2-} \\ & & \mathrm{I}_2 + 2 \ \mathrm{S}_2 \mathrm{O}_3^{2-} & \rightarrow & 2\mathrm{I}^- + \mathrm{S}_4 \mathrm{O}_6^{2-} \end{array}$$
$$\mathrm{I}_2 + \mathrm{starch\ indicator} & \rightarrow & \mathrm{blue}\text{-black\ product} \end{array}$$

5. How does the rate of the reaction below compare to the rate of change of reactants? Select all that apply. $2 I_{-} + 2 O_{-}^{2} = I_{-} + 2 O_{-}^{2}$

$$2 \mathbf{l}^- + \mathbf{S}_2 \mathbf{O}_8^{2-} \rightarrow \mathbf{l}_2 + \mathbf{S} \mathbf{O}_4^{2-}$$

$$Rate = -\frac{\Delta[S_2O_8^{2-}]}{\Delta t} \qquad Rate = -\frac{\Delta[S_2O_8^{2-}]}{\Delta t}$$
$$Rate = -\frac{\Delta[I^{1-}]}{\Delta t} \qquad Rate = -\frac{\Delta[I^{-}]}{2\Delta t}$$
$$Rate = -\frac{2\Delta[S_2O_3^{2-}]}{\Delta t} \qquad Rate = -\frac{1}{2}\frac{\Delta[S_2O_3^{2-}]}{\Delta t}$$