
612 Foundations of Trigonometry

10.2 The Unit Circle: Cosine and Sine

In Section 10.1.1, we introduced circular motion and derived a formula which describes the linear
velocity of an object moving on a circular path at a constant angular velocity. One of the goals of
this section is describe the position of such an object. To that end, consider an angle θ in standard
position and let P denote the point where the terminal side of θ intersects the Unit Circle. By
associating a point P with an angle θ, we are assigning a position P on the Unit Circle to each
angle θ. The x-coordinate of P is called the cosine of θ, written cos(θ), while the y-coordinate of
P is called the sine of θ, written sin(θ).1 The reader is encouraged to verify that the rules by which
we match an angle with its cosine and sine do, in fact, satisfy the definition of function. That is,
for each angle θ, there is only one associated value of cos(θ) and only one associated value of sin(θ).
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Example 10.2.1. Find the cosine and sine of the following angles.

1. θ = 270◦ 2. θ = −π 3. θ = 45◦ 4. θ = π
6 5. θ = 60◦

Solution.

1. To find cos (270◦) and sin (270◦), we plot the angle θ = 270◦ in standard position and find
the point on the terminal side of θ which lies on the Unit Circle. Since 270◦ represents 3

4 of a
counter-clockwise revolution, the terminal side of θ lies along the negative y-axis. Hence, the
point we seek is (0,−1) so that cos

(
3π
2

)
= 0 and sin

(
3π
2

)
= −1.

2. The angle θ = −π represents one half of a clockwise revolution so its terminal side lies on
the negative x-axis. The point on the Unit Circle which lies on the negative x-axis is (−1, 0)
which means cos(−π) = −1 and sin(−π) = 0.

1The etymology of the name ‘sine’ is quite colorful, and the interested reader is invited to research it; the ‘co’ in
‘cosine’ is explained in Section 10.4.



10.2 The Unit Circle: Cosine and Sine 613

x

y

1

1

P (0,−1)

θ = 270◦

Finding cos (270◦) and sin (270◦)
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3. When we sketch θ = 45◦ in standard position, we see that its terminal does not lie along
any of the coordinate axes which makes our job of finding the cosine and sine values a bit
more difficult. Let P (x, y) denote the point on the terminal side of θ which lies on the Unit
Circle. By definition, x = cos (45◦) and y = sin (45◦). If we drop a perpendicular line segment
from P to the x-axis, we obtain a 45◦ − 45◦ − 90◦ right triangle whose legs have lengths x
and y units. From Geometry, we get y = x.2 Since P (x, y) lies on the Unit Circle, we have

x2 + y2 = 1. Substituting y = x into this equation yields 2x2 = 1, or x = ±
√

1
2 = ±

√
2

2 .

Since P (x, y) lies in the first quadrant, x > 0, so x = cos (45◦) =
√

2
2 and with y = x we have

y = sin (45◦) =
√

2
2 .
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2Can you show this?
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4. As before, the terminal side of θ = π
6 does not lie on any of the coordinate axes, so we proceed

using a triangle approach. Letting P (x, y) denote the point on the terminal side of θ which
lies on the Unit Circle, we drop a perpendicular line segment from P to the x-axis to form a
30◦ − 60◦ − 90◦ right triangle. After a bit of Geometry3 we find x = y

√
3. Since P (x, y) lies

on the Unit Circle, we substitute x = y
√

3 into x2 + y2 = 1 to get 4y2 = 1, or y = ±1
2 . Here,

y > 0, so y = sin
(
π
6

)
= 1

2 , and since x = y
√

3, x = cos
(
π
6

)
=
√

3
2 .
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5. Plotting θ = 60◦ in standard position, we find it is not a quadrantal angle and set about using
a triangle approach. Once again, we get a 30◦ − 60◦ − 90◦ right triangle and, after the usual

computations, find x = cos (60◦) = 1
2 and y = sin (60◦) =

√
3

2 .
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3Again, can you show this?
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In Example 10.2.1, it was quite easy to find the cosine and sine of the quadrantal angles, but for
non-quadrantal angles, the task was much more involved. In these latter cases, we made good
use of the fact that the point P (x, y) = (cos(θ), sin(θ)) lies on the Unit Circle, x2 + y2 = 1. If
we substitute x = cos(θ) and y = sin(θ) into x2 + y2 = 1, we get (cos(θ))2 + (sin(θ))2 = 1. An
unfortunate4 convention, which the authors are compelled to perpetuate, is to write (cos(θ))2 as
cos2(θ) and (sin(θ))2 as sin2(θ). Rewriting the identity using this convention results in the following
theorem, which is without a doubt one of the most important results in Trigonometry.

Theorem 10.1. The Pythagorean Identity: For any angle θ, cos2(θ) + sin2(θ) = 1.

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from which both the Distance
Formula and the equation for a circle are ultimately derived.5 The word ‘Identity’ reminds us that,
regardless of the angle θ, the equation in Theorem 10.1 is always true. If one of cos(θ) or sin(θ)
is known, Theorem 10.1 can be used to determine the other, up to a sign, (±). If, in addition, we
know where the terminal side of θ lies when in standard position, then we can remove the ambiguity
of the (±) and completely determine the missing value as the next example illustrates.

Example 10.2.2. Using the given information about θ, find the indicated value.

1. If θ is a Quadrant II angle with sin(θ) = 3
5 , find cos(θ).

2. If θ is a Quadrant III angle with cos(θ) = −
√

5
5 , find sin(θ).

3. If sin(θ) = 1, find cos(θ).

Solution.

1. When we substitute sin(θ) = 3
5 into The Pythagorean Identity, cos2(θ) + sin2(θ) = 1, we

obtain cos2(θ) + 9
25 = 1. Solving, we find cos(θ) = ±4

5 . Since θ is a Quadrant II angle, its
terminal side, when plotted in standard position, lies in Quadrant II. Since the x-coordinates
are negative in Quadrant II, cos(θ) is too. Hence, cos(θ) = −4

5 .

2. Substituting cos(θ) = −
√

5
5 into cos2(θ) + sin2(θ) = 1 gives sin(θ) = ± 2√

5
= ±2

√
5

5 . Since

θ is a Quadrant III angle, both its sine and cosine are negative (Can you see why?) so we

conclude sin(θ) = −2
√

5
5 .

3. When we substitute sin(θ) = 1 into cos2(θ) + sin2(θ) = 1, we find cos(θ) = 0.

Another tool which helps immensely in determining cosines and sines of angles is the symmetry
inherent in the Unit Circle. Suppose, for instance, we wish to know the cosine and sine of θ = 5π

6 .
We plot θ in standard position below and, as usual, let P (x, y) denote the point on the terminal
side of θ which lies on the Unit Circle. Note that the terminal side of θ lies π

6 radians short of one

half revolution. In Example 10.2.1, we determined that cos
(
π
6

)
=
√

3
2 and sin

(
π
6

)
= 1

2 . This means

4This is unfortunate from a ‘function notation’ perspective. See Section 10.6.
5See Sections 1.1 and 7.2 for details.
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that the point on the terminal side of the angle π
6 , when plotted in standard position, is

(√
3

2 ,
1
2

)
.

From the figure below, it is clear that the point P (x, y) we seek can be obtained by reflecting that

point about the y-axis. Hence, cos
(

5π
6

)
= −

√
3

2 and sin
(

5π
6

)
= 1

2 .
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In the above scenario, the angle π
6 is called the reference angle for the angle 5π

6 . In general, for
a non-quadrantal angle θ, the reference angle for θ (usually denoted α) is the acute angle made
between the terminal side of θ and the x-axis. If θ is a Quadrant I or IV angle, α is the angle
between the terminal side of θ and the positive x-axis; if θ is a Quadrant II or III angle, α is
the angle between the terminal side of θ and the negative x-axis. If we let P denote the point
(cos(θ), sin(θ)), then P lies on the Unit Circle. Since the Unit Circle possesses symmetry with
respect to the x-axis, y-axis and origin, regardless of where the terminal side of θ lies, there is a
point Q symmetric with P which determines θ’s reference angle, α as seen below.
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We have just outlined the proof of the following theorem.

Theorem 10.2. Reference Angle Theorem. Suppose α is the reference angle for θ. Then
cos(θ) = ± cos(α) and sin(θ) = ± sin(α), where the choice of the (±) depends on the quadrant in
which the terminal side of θ lies.

In light of Theorem 10.2, it pays to know the cosine and sine values for certain common angles. In
the table below, we summarize the values which we consider essential and must be memorized.

Cosine and Sine Values of Common Angles

θ(degrees) θ(radians) cos(θ) sin(θ)

0◦ 0 1 0

30◦ π
6

√
3

2
1
2

45◦ π
4

√
2

2

√
2

2

60◦ π
3

1
2

√
3

2

90◦ π
2 0 1

Example 10.2.3. Find the cosine and sine of the following angles.

1. θ = 225◦ 2. θ = 11π
6 3. θ = −5π

4 4. θ = 7π
3

Solution.

1. We begin by plotting θ = 225◦ in standard position and find its terminal side overshoots the
negative x-axis to land in Quadrant III. Hence, we obtain θ’s reference angle α by subtracting:
α = θ − 180◦ = 225◦ − 180◦ = 45◦. Since θ is a Quadrant III angle, both cos(θ) < 0 and
sin(θ) < 0. Coupling this with the Reference Angle Theorem, we obtain: cos (225◦) =

− cos (45◦) = −
√

2
2 and sin (225◦) = − sin (45◦) = −

√
2

2 .
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2. The terminal side of θ = 11π
6 , when plotted in standard position, lies in Quadrant IV, just shy

of the positive x-axis. To find θ’s reference angle α, we subtract: α = 2π− θ = 2π− 11π
6 = π

6 .
Since θ is a Quadrant IV angle, cos(θ) > 0 and sin(θ) < 0, so the Reference Angle Theorem

gives: cos
(

11π
6

)
= cos

(
π
6

)
=
√

3
2 and sin

(
11π
6

)
= − sin

(
π
6

)
= −1

2 .
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)
3. To plot θ = −5π

4 , we rotate clockwise an angle of 5π
4 from the positive x-axis. The terminal

side of θ, therefore, lies in Quadrant II making an angle of α = 5π
4 − π = π

4 radians with
respect to the negative x-axis. Since θ is a Quadrant II angle, the Reference Angle Theorem

gives: cos
(
−5π

4

)
= − cos

(
π
4

)
= −

√
2

2 and sin
(
−5π

4

)
= sin

(
π
4

)
=
√

2
2 .

4. Since the angle θ = 7π
3 measures more than 2π = 6π

3 , we find the terminal side of θ by rotating
one full revolution followed by an additional α = 7π

3 − 2π = π
3 radians. Since θ and α are

coterminal, cos
(

7π
3

)
= cos

(
π
3

)
= 1

2 and sin
(

7π
3

)
= sin

(
π
3

)
=
√

3
2 .
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The reader may have noticed that when expressed in radian measure, the reference angle for a
non-quadrantal angle is easy to spot. Reduced fraction multiples of π with a denominator of 6
have π

6 as a reference angle, those with a denominator of 4 have π
4 as their reference angle, and

those with a denominator of 3 have π
3 as their reference angle.6 The Reference Angle Theorem

in conjunction with the table of cosine and sine values on Page 617 can be used to generate the
following figure, which the authors feel should be committed to memory.
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Important Points on the Unit Circle

6For once, we have something convenient about using radian measure in contrast to the abstract theoretical
nonsense about using them as a ‘natural’ way to match oriented angles with real numbers!
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The next example summarizes all of the important ideas discussed thus far in the section.

Example 10.2.4. Suppose α is an acute angle with cos(α) = 5
13 .

1. Find sin(α) and use this to plot α in standard position.

2. Find the sine and cosine of the following angles:

(a) θ = π + α (b) θ = 2π − α (c) θ = 3π − α (d) θ = π
2 + α

Solution.

1. Proceeding as in Example 10.2.2, we substitute cos(α) = 5
13 into cos2(α) + sin2(α) = 1 and

find sin(α) = ±12
13 . Since α is an acute (and therefore Quadrant I) angle, sin(α) is positive.

Hence, sin(α) = 12
13 . To plot α in standard position, we begin our rotation on the positive

x-axis to the ray which contains the point (cos(α), sin(α)) =
(

5
13 ,

12
13

)
.

x

y

1

1 (
5
13 ,

12
13

)
α

Sketching α

2. (a) To find the cosine and sine of θ = π + α, we first plot θ in standard position. We can
imagine the sum of the angles π+α as a sequence of two rotations: a rotation of π radians
followed by a rotation of α radians.7 We see that α is the reference angle for θ, so by
The Reference Angle Theorem, cos(θ) = ± cos(α) = ± 5

13 and sin(θ) = ± sin(α) = ±12
13 .

Since the terminal side of θ falls in Quadrant III, both cos(θ) and sin(θ) are negative,
hence, cos(θ) = − 5

13 and sin(θ) = −12
13 .

7Since π + α = α+ π, θ may be plotted by reversing the order of rotations given here. You should do this.
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(b) Rewriting θ = 2π − α as θ = 2π + (−α), we can plot θ by visualizing one complete
revolution counter-clockwise followed by a clockwise revolution, or ‘backing up,’ of α
radians. We see that α is θ’s reference angle, and since θ is a Quadrant IV angle, the
Reference Angle Theorem gives: cos(θ) = 5

13 and sin(θ) = −12
13 .
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(c) Taking a cue from the previous problem, we rewrite θ = 3π − α as θ = 3π + (−α). The
angle 3π represents one and a half revolutions counter-clockwise, so that when we ‘back
up’ α radians, we end up in Quadrant II. Using the Reference Angle Theorem, we get
cos(α) = − 5

13 and sin(α) = 12
13 .
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(d) To plot θ = π
2 +α, we first rotate π

2 radians and follow up with α radians. The reference
angle here is not α, so The Reference Angle Theorem is not immediately applicable.
(It’s important that you see why this is the case. Take a moment to think about this
before reading on.) Let Q(x, y) be the point on the terminal side of θ which lies on the
Unit Circle so that x = cos(θ) and y = sin(θ). Once we graph α in standard position,
we use the fact that equal angles subtend equal chords to show that the dotted lines in
the figure below are equal. Hence, x = cos(θ) = −12

13 . Similarly, we find y = sin(θ) = 5
13 .
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Using symmetry to determine Q(x, y)

Our next example asks us to solve some very basic trigonometric equations.8

8We will more formally study of trigonometric equations in Section 10.7. Enjoy these relatively straightforward
exercises while they last!
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Example 10.2.5. Find all of the angles which satisfy the given equation.

1. cos(θ) =
1

2
2. sin(θ) = −1

2
3. cos(θ) = 0.

Solution. Since there is no context in the problem to indicate whether to use degrees or radians,
we will default to using radian measure in our answers to each of these problems. This choice will
be justified later in the text when we study what is known as Analytic Trigonometry. In those
sections to come, radian measure will be the only appropriate angle measure so it is worth the time
to become “fluent in radians” now.

1. If cos(θ) = 1
2 , then the terminal side of θ, when plotted in standard position, intersects the

Unit Circle at x = 1
2 . This means θ is a Quadrant I or IV angle with reference angle π

3 .
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3

One solution in Quadrant I is θ = π
3 , and since all other Quadrant I solutions must be

coterminal with π
3 , we find θ = π

3 +2πk for integers k.9 Proceeding similarly for the Quadrant
IV case, we find the solution to cos(θ) = 1

2 here is 5π
3 , so our answer in this Quadrant is

θ = 5π
3 + 2πk for integers k.

2. If sin(θ) = −1
2 , then when θ is plotted in standard position, its terminal side intersects the

Unit Circle at y = −1
2 . From this, we determine θ is a Quadrant III or Quadrant IV angle

with reference angle π
6 .

9Recall in Section 10.1, two angles in radian measure are coterminal if and only if they differ by an integer multiple
of 2π. Hence to describe all angles coterminal with a given angle, we add 2πk for integers k = 0, ±1, ±2, . . . .
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In Quadrant III, one solution is 7π
6 , so we capture all Quadrant III solutions by adding integer

multiples of 2π: θ = 7π
6 + 2πk. In Quadrant IV, one solution is 11π

6 so all the solutions here
are of the form θ = 11π

6 + 2πk for integers k.

3. The angles with cos(θ) = 0 are quadrantal angles whose terminal sides, when plotted in
standard position, lie along the y-axis.
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While, technically speaking, π
2 isn’t a reference angle we can nonetheless use it to find our

answers. If we follow the procedure set forth in the previous examples, we find θ = π
2 + 2πk

and θ = 3π
2 + 2πk for integers, k. While this solution is correct, it can be shortened to

θ = π
2 + πk for integers k. (Can you see why this works from the diagram?)

One of the key items to take from Example 10.2.5 is that, in general, solutions to trigonometric
equations consist of infinitely many answers. To get a feel for these answers, the reader is encouraged
to follow our mantra from Chapter 9 - that is, ‘When in doubt, write it out!’ This is especially
important when checking answers to the exercises. For example, another Quadrant IV solution to
sin(θ) = −1

2 is θ = −π
6 . Hence, the family of Quadrant IV answers to number 2 above could just

have easily been written θ = −π
6 + 2πk for integers k. While on the surface, this family may look
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different than the stated solution of θ = 11π
6 + 2πk for integers k, we leave it to the reader to show

they represent the same list of angles.

10.2.1 Beyond the Unit Circle

We began the section with a quest to describe the position of a particle experiencing circular motion.
In defining the cosine and sine functions, we assigned to each angle a position on the Unit Circle. In
this subsection, we broaden our scope to include circles of radius r centered at the origin. Consider
for the moment the acute angle θ drawn below in standard position. Let Q(x, y) be the point on
the terminal side of θ which lies on the circle x2 + y2 = r2, and let P (x′, y′) be the point on the
terminal side of θ which lies on the Unit Circle. Now consider dropping perpendiculars from P and
Q to create two right triangles, ∆OPA and ∆OQB. These triangles are similar, 10 thus it follows
that x

x′ = r
1 = r, so x = rx′ and, similarly, we find y = ry′. Since, by definition, x′ = cos(θ) and

y′ = sin(θ), we get the coordinates of Q to be x = r cos(θ) and y = r sin(θ). By reflecting these
points through the x-axis, y-axis and origin, we obtain the result for all non-quadrantal angles θ,
and we leave it to the reader to verify these formulas hold for the quadrantal angles.
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1

1

r

r

Q (x, y)

P (x′, y′)

θ

θ

x

y

1

O B(x, 0)A(x′, 0)

P (x′, y′)

Q(x, y) = (r cos(θ), r sin(θ))

Not only can we describe the coordinates of Q in terms of cos(θ) and sin(θ) but since the radius of
the circle is r =

√
x2 + y2, we can also express cos(θ) and sin(θ) in terms of the coordinates of Q.

These results are summarized in the following theorem.

Theorem 10.3. Suppose Q(x, y) is the point on the terminal side of an angle θ, plotted in standard
position, which lies on the circle of radius r, x2 + y2 = r2. Then x = r cos(θ) and y = r sin(θ).
Moreover,

cos(θ) =
x

r
=

x√
x2 + y2

and sin(θ) =
y

r
=

y√
x2 + y2

10Do you remember why?
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Note that in the case of the Unit Circle we have r =
√
x2 + y2 = 1, so Theorem 10.3 reduces to

our definitions of cos(θ) and sin(θ).

Example 10.2.6.

1. Suppose that the terminal side of an angle θ, when plotted in standard position, contains the
point Q(4,−2). Find sin(θ) and cos(θ).

2. In Example 10.1.5 in Section 10.1, we approximated the radius of the earth at 41.628◦ north
latitude to be 2960 miles. Justify this approximation if the radius of the Earth at the Equator
is approximately 3960 miles.

Solution.

1. Using Theorem 10.3 with x = 4 and y = −2, we find r =
√

(4)2 + (−2)2 =
√

20 = 2
√

5 so

that cos(θ) = x
r = 4

2
√

5
= 2

√
5

5 and y = y
r = −2

2
√

5
= −

√
5

5 .

2. Assuming the Earth is a sphere, a cross-section through the poles produces a circle of radius
3960 miles. Viewing the Equator as the x-axis, the value we seek is the x-coordinate of the
point Q(x, y) indicated in the figure below.
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−4 −2 2 4
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4

The terminal side of θ contains Q(4,−2)

x

y

3960

3960

Q (x, y)

41.628◦

A point on the Earth at 41.628◦N

Using Theorem 10.3, we get x = 3960 cos (41.628◦). Using a calculator in ‘degree’ mode, we
find 3960 cos (41.628◦) ≈ 2960. Hence, the radius of the Earth at North Latitude 41.628◦ is
approximately 2960 miles.
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Theorem 10.3 gives us what we need to describe the position of an object traveling in a circular
path of radius r with constant angular velocity ω. Suppose that at time t, the object has swept
out an angle measuring θ radians. If we assume that the object is at the point (r, 0) when t = 0,
the angle θ is in standard position. By definition, ω = θ

t which we rewrite as θ = ωt. According
to Theorem 10.3, the location of the object Q(x, y) on the circle is found using the equations
x = r cos(θ) = r cos(ωt) and y = r sin(θ) = r sin(ωt). Hence, at time t, the object is at the point
(r cos(ωt), r sin(ωt)).11

x

y

1

1

r

r
Q (x, y) = (r cos(ωt), r sin(ωt))

θ = ωt

Equations for Circular Motion

Example 10.2.7. Suppose we are in the situation of Example 10.1.5. Find the equations of motion
of Lakeland Community College as the earth rotates.

Solution. From Example 10.1.5, we take r = 2960 miles and and ω = π
12 hours . Hence, the

equations of motion are x = r cos(ωt) = 2960 cos
(
π
12 t
)

and y = r sin(ωt) = 2960 sin
(
π
12 t
)
, where x

and y are measured in miles and t is measured in hours.

In addition to circular motion, Theorem 10.3 is also the key to developing what is usually called
‘right triangle’ trigonometry.12 As we shall see in the sections to come, many applications in
trigonometry involve finding the measures of the angles in, and lengths of the sides of, right triangles.
Indeed, we made good use of some properties of right triangles to find the exact values of the cosine
and sine of many of the angles in Example 10.2.1, so the following development shouldn’t be that
much of a surprise. Consider the generic right triangle below with corresponding acute angle θ.
The side with length a is called the side of the triangle adjacent to θ; the side with length b is
called the side of the triangle opposite θ; and the remaining side of length c (the side opposite the
right angle) is called the hypotenuse. We now imagine drawing this triangle in Quadrant I so that
the angle θ is in standard position with the adjacent side to θ lying along the positive x-axis.

11If the object does not start at (r, 0) when t = 0, the equations of motion need to be adjusted accordingly. If
t0 > 0 is the first time the object passes through the point (r, 0), it can be shown the position of the object is given
by x = r cos(ω(t− t0)) and y = r sin(ω(t− t0)).

12You may have been exposed to this in High School.
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θ

a

b
c

x

y

c

c

P (a, b)

θ

According to the Pythagorean Theorem, a2 + b2 = c2, so that the point P (a, b) lies on a circle of
radius c. Theorem 10.3 tells us that cos(θ) = a

c and sin(θ) = b
c , so we have determined the cosine

and sine of θ in terms of the lengths of the sides of the right triangle. Thus we have the following
theorem.

Theorem 10.4. Suppose θ is an acute angle residing in a right triangle. If the length of the side
adjacent to θ is a, the length of the side opposite θ is b, and the length of the hypotenuse is c,

then cos(θ) =
a

c
and sin(θ) =

b

c
.

Example 10.2.8. Find the measure of the missing angle and the lengths of the missing sides of:

30◦

7

Solution. The first and easiest task is to find the measure of the missing angle. Since the sum of
angles of a triangle is 180◦, we know that the missing angle has measure 180◦ − 30◦ − 90◦ = 60◦.
We now proceed to find the lengths of the remaining two sides of the triangle. Let c denote the
length of the hypotenuse of the triangle. By Theorem 10.4, we have cos (30◦) = 7

c , or c = 7
cos(30◦) .

Since cos (30◦) =
√

3
2 , we have, after the usual fraction gymnastics, c = 14

√
3

3 . At this point, we
have two ways to proceed to find the length of the side opposite the 30◦ angle, which we’ll denote

b. We know the length of the adjacent side is 7 and the length of the hypotenuse is 14
√

3
3 , so we

could use the Pythagorean Theorem to find the missing side and solve (7)2 + b2 =
(

14
√

3
3

)2
for b.

Alternatively, we could use Theorem 10.4, namely that sin (30◦) = b
c . Choosing the latter, we find

b = c sin (30◦) = 14
√

3
3 · 1

2 = 7
√

3
3 . The triangle with all of its data is recorded below.
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30◦

7

b = 7
√

3
3

c = 14
√

3
3 60◦

We close this section by noting that we can easily extend the functions cosine and sine to real
numbers by identifying a real number t with the angle θ = t radians. Using this identification, we
define cos(t) = cos(θ) and sin(t) = sin(θ). In practice this means expressions like cos(π) and sin(2)
can be found by regarding the inputs as angles in radian measure or real numbers; the choice is
the reader’s. If we trace the identification of real numbers t with angles θ in radian measure to its
roots on page 604, we can spell out this correspondence more precisely. For each real number t, we
associate an oriented arc t units in length with initial point (1, 0) and endpoint P (cos(t), sin(t)).

x

y

1

1

θ = t

t

x

y

1

1
P (cos(t), sin(t))

θ = t

In the same way we studied polynomial, rational, exponential, and logarithmic functions, we will
study the trigonometric functions f(t) = cos(t) and g(t) = sin(t). The first order of business is to
find the domains and ranges of these functions. Whether we think of identifying the real number
t with the angle θ = t radians, or think of wrapping an oriented arc around the Unit Circle to
find coordinates on the Unit Circle, it should be clear that both the cosine and sine functions are
defined for all real numbers t. In other words, the domain of f(t) = cos(t) and of g(t) = sin(t)
is (−∞,∞). Since cos(t) and sin(t) represent x- and y-coordinates, respectively, of points on the
Unit Circle, they both take on all of the values between −1 an 1, inclusive. In other words, the
range of f(t) = cos(t) and of g(t) = sin(t) is the interval [−1, 1]. To summarize:

Theorem 10.5. Domain and Range of the Cosine and Sine Functions:

• The function f(t) = cos(t) • The function g(t) = sin(t)

– has domain (−∞,∞) – has domain (−∞,∞)

– has range [−1, 1] – has range [−1, 1]
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Suppose, as in the Exercises, we are asked to solve an equation such as sin(t) = −1
2 . As we have

already mentioned, the distinction between t as a real number and as an angle θ = t radians is often
blurred. Indeed, we solve sin(t) = −1

2 in the exact same manner13 as we did in Example 10.2.5
number 2. Our solution is only cosmetically different in that the variable used is t rather than θ:
t = 7π

6 +2πk or t = 11π
6 +2πk for integers, k. We will study the cosine and sine functions in greater

detail in Section 10.5. Until then, keep in mind that any properties of cosine and sine developed
in the following sections which regard them as functions of angles in radian measure apply equally
well if the inputs are regarded as real numbers.

13Well, to be pedantic, we would be technically using ‘reference numbers’ or ‘reference arcs’ instead of ‘reference
angles’ – but the idea is the same.


