
Fig. 27–1 Albert Einstein 
in 1905.
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I n H.G. Wells’s classic novel The Time Machine, the hero invents a device that transports

him hundreds of years into the future. As fantastic as this sounds, a time machine is

possible. As we shall see in this chapter, all that is required is a spaceship capable of moving

at a speed close to the speed of light. If you traveled for a few years in such a spaceship

and then returned to earth, you would find that many more years had elapsed on earth.

If you were traveling fast enough, perhaps hundreds or even thousands of years would

have passed. Although extremely high-speed, long-distance space travel is not yet prac-

tical, someday it may be. An astronaut might blast off from the earth in a spaceship that

takes her to distant regions of space, reaching speeds approaching the speed of light. The

astronaut, still young, might return to earth hundreds of years later. However, unlike the

Wells story, she would never be able to go back to the past or to those she left behind.

Time travel is apparently limited to a one-way trip—into the future, never into the past.

We can predict today the possibility of time travel, based on work first published in

1905 by a man who was then an obscure Swiss patent clerk. The man was Albert Einstein

(Fig. 27–1), and his work was the theory of relativity—a theory that was to make him the

most famous scientist of all time. As much as any athlete or film star, he was a great

celebrity of his day. His name became synonymous with genius. Einstein’s life is described

in an essay at the end of this chapter.

Although Einstein’s insights were brilliant, his ideas did not arise in a vacuum. In a sense

they were the natural result of the kinds of questions that were being asked at the turn

of the century. However, we shall not discuss this historical background of relativity

theory here. In this way we can present without interruption the essence of Einstein's

ideas, so that you can better appreciate their logical simplicity and beauty.

C.HAPTER27
Return to Table of Contents

A scene from the movie
TheTime Machine, based on
the 1895 novel by H.G. Wells.



Fig. 27–2 Various clocks: a simple
pendulum being used to mark time,
a pendulum clock in Berne, Switzerland,
a quartz wristwatch, earth clock.

Measurement of Time; Einstein’s Postulates
The Nature of Time
What is time? Physicists, philosophers, and poets have all struggled with this question.
Simply defining time as “duration” or “period” does no good, since such a definition
merely substitutes for time another undefined quantity. Comedian Woody Allen jokingly
defined time as “nature’s way of keeping everything from happening at once.” Of
course, we all have a sense of what time is, though we may not be able to express it in
words. In the Principia, Isaac Newton wrote: “I do not define time, space, place, and
motion, since they are well known to all.” However it is important that we examine
more carefully the meaning of time, so that we do not harbor false or misleading con -
cepts. Newton himself believed that “absolute, true, and mathematical time, of itself,
and from its own nature, flows equably without relation to anything external… .” We
shall see that such a concept of absolute time is unfounded. Einstein showed that time
is relative, not absolute.
The concept of time as it is used in physics always relates to measurement with a

clock. Suppose, for example, a certain plane arrives at an airport at 4:00 P.M. Saying
that the time of arrival is 4:00 P.M. means simply that the arrival of the plane is simul-
taneous* with a clock reading 4:00. The time of any event is given by the reading of
a nearby clock, simultaneous with the event.
Clocks are generally based on some kind of repetitive or periodic motion (Fig.

27–2). Old-fashioned pendulum clocks count oscillations of a pendulum. A modern
quartz wristwatch measures time by counting the oscillations of a quartz crystal. The
quartz watch is more accurate than a pendulum clock because the period of oscillation
of the quartz is more regular than the period of the pendulum. The most accurate
clocks are atomic clocks, which are based on the period of the electromagnetic radi-
ation emitted by an atom. Motion of the earth and moon provides a kind of natural
clock, with time units of days, months, or years. And the human body is also a natural
clock, with various natural cycles or intervals: the heartbeat, circadian rhythms (cycles
of about 1 day, such as the sleep cycle), monthly menstrual cycles, and even lifetimes.
Measuring the time of a very distant event is not as direct as for a nearby event,

since observation of the event requires light, which travels at a finite speed.† When you
look up at the night sky, you see light from stars at various distances. For example, you
may see the stars Sirius and Betelgeuse simultaneously. This does not mean that the
light from these stars is emitted simultaneously. Astronomers have determined that the
distances to these stars are approximately 9 light-years and 490 light-years respect -
ively; that is, light from Sirius takes 9 years to reach earth, and light from Betelgeuse
takes 490 years to reach earth. The light you see coming from Betelgeuse was emitted
481 years earlier than the light from Sirius, though you see the light from each at the
same instant!
We compute the time of distant events based on the known speed of light and the

place where the event occurred. We can use that computation to coordinate clocks at
very distant locations. For example, an astronaut on the moon can synchronize her
clock by communicating with earth via visible light or other electromagnetic radiation 

*When we say that the plane’s arrival and the clock’s reading are simultaneous, you know what that means.
The idea of simultaneous events at the same place is a basic undefinable concept; that is, we cannot define
this concept in terms of anything more basic.

†The earth is small enough that we can witness any event on earth with almost no delay time. Light can
travel half way around the world in less than 0.1 s. For example, we can witness on television a political
uprising in Beijing, China, as it is occurring, by means of electromagnetic waves bounced off of commu-
nication satellites.
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766 CHAPTER 27 Relativity



76727–1 Measurement of Time; Einstein’s Postulates

Fig. 27–3 Observers on the earth and the moon synchronize their watches by means of
 electromagnetic signals. Compared to the speed of light, the observers are nearly at rest with
respect to one another.

(Fig. 27–3). In principle, one could set up a system of synchronized clocks throughout
the universe. If these clocks are at rest relative to one another at known locations, they
form a reference frame for observing events throughout the universe. The time of any
event, relative to this reference frame, is defined as the reading of one of the refer-
ence frame’s clocks close to the event.
The next question that arises is whether systems of clocks in relative motion at very

high speed can be synchronized so that passing clocks always agree. The answer is no,
as we shall see in the next section. But to arrive at this conclusion we must first
intro  duce Einstein’s postulates.

Einstein’s Postulates
Einstein based his theory of relativity on the following two postulates:
I The principle of relativity: All laws of physics are valid in any inertial
reference frame.

II Light always travels through a vacuum at a fixed speed c, relative to any
inertial reference frame, independent of the motion of the light source.

Meaning of Einstein’s First Postulate
An inertial reference frame is any reference frame in which the principle of inertia,
Newton’s first law, is valid. As discussed in Chapter 4 (Section 4–3), the earth’s
surface is approximately an inertial reference frame. Any reference frame moving at
constant velocity with respect to the earth is also inertial. Suppose you are in a plane
moving at a constant velocity of 1000 km/h westward. According to the principle of
relativity, all the laws of physics work for you, just as they would on the ground. It
follows that if the plane’s windows were covered there would be no way to discover
your motion by means of any experiment confined to the plane. For example, if you
were to perform a free-fall experiment, you would measure the same gravitational
acceleration as though you were at rest with respect to the earth. Other experiments in
mechanics, electricity, optics, and so forth would all give the same results as though
performed at rest on the ground, if in all these experiments there were no interactions
with anything outside the plane. The principle of relativity implies that absolute
motion is meaningless. Only relative motion has meaning. Thus, for example, it is just
as valid to use the reference frame of the plane and describe the plane as being at rest
and the earth as moving at 1000 km/h eastward.
Accelerated reference frames are not inertial. The laws of physics do not work in

such reference frames. For example, you can easily detect a plane’s motion at takeoff
and landing, when it is accelerating. You can feel the force on your body producing the
acceleration.

This book is licensed for single-copy use only. It is prohibited by law to distribute copies of this book in any form.



Fig. 27–4 A pulse of light is emitted
from a laser on a spaceship as it passes
the earth at a speed of 2.00 � 108 m/s.

Fig. 27–5 Spaceship B, relative to the
earth, travels at a velocity of 1.00 � 108

m/s directed toward the left. This ship is
an inertial reference frame. Therefore the
laser pulse emitted by ship A travels at a
speed of 3.00 � 108 m/s, relative to B.
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Meaning of Einstein’s Second Postulate
Einstein’s second postulate is at first hard to accept. According to this postulate, if we
observe light from any inertial reference frame, the light travels at a fixed speed c 
3.00 � 108 m/s no matter how fast the source of the light may be moving. For example,
suppose that a spaceship (A) is passing the earth at a speed of 2.00 � 108 m/s and emits
a laser pulse directed at the moon (Fig. 27–4). According to Einstein’s second postu-
late, the laser light travels from the spaceship to the moon at a speed of 3.00 � 108 m/s
—not at a speed of 5.00 � 108 m/s! This means that the pulse is received on the moon,
3.84 � 108 m away, after a time delay of (3.84 � 108 m)/(3.00 � 108 m/s)  1.28 s.
This time interval is measured by synchronized clocks on the earth and the moon.

The really amazing thing about the motion of light is that it moves at the same
speed relative to any inertial reference frame. Suppose, for example, the light pulse is
observed by an astronaut who also happens to be passing the earth but moving in the
opposite direction at a speed of 1.00 � 108 m/s in spaceship B, as shown in Fig. 27–5.
According to Einstein’s second postulate, the laser pulse travels at a speed of 3.00 �
108 m/s, as seen by the astronaut on ship B. The laser pulse moves at the same speed
(3.00 � 108 m/s) relative to the earth and relative to each of the spaceships, despite the
fact that the spaceships are moving relative to the earth. Obviously the equations for
determining relative velocities, presented in Chapter 3 (Section 3–4), are not valid for
light. (And these equations are invalid for any bodies moving at speeds comparable to
the speed of light, as we shall see in Section 27–4.)

By way of contrast with the behavior of light, consider how sound waves travel
when the source of sound is moving. The speed of wave propagation is independent of
the motion of the source of the sound. However, the speed is not the same in all
reference frames. Sound waves move through a medium at a fixed speed relative to the
medium. Sound travels through air at a speed of 340 m/s, relative to the air, even if the
sound source is moving through the air. For example, as illustrated in Fig. 27–6,
sound from a race car engine moves at 340 m/s relative to the air (and relative to a
stationary observer), even though the car (A) is moving at 70 m/s. However, the speed
of sound is different when measured by an observer moving relative to the air. If car B
approaches car A at a speed of 50 m/s (relative to the ground and the air), the sound
wave moves relative to B at a speed of 390 m/s (Fig. 27–7).



Fig. 27–6 Relative to a stationary
obser ver, sound waves emitted by a
moving race car (A) travel at a speed
of 340 m/s, independent of the speed
of the car.

Fig. 27–7 Sound emitted by A, as
observed in two different reference
frames.
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(a)

(b)

Although car B is an inertial reference frame and therefore the laws of physics are
just as good in B’s reference frame as in any other, the law of sound propagation must
take account of the relative motion of the air—the medium through which the sound
propagates. And so the observed speed of the sound wave is different for B from that
observed by one who is at rest with respect to the air. For light propagation, no
medium is required, and observers in all inertial reference frames observe the same
velocity of light.
Einstein’s second postulate is actually implied by his first postulate. Remember that

the laws of electromagnetism predict the existence of electromagnetic waves that
travel at a speed c, which can be calculated in terms of the electric constant �0 and the
magnetic constant !0:

c   3.00 � 108 m/s

If the laws of electromagnetism are correct (and they are), it follows from the principle
of relativity that the speed of light should be the same in all inertial reference frames.

Experimental Support for Einstein’s Postulates
Einstein’s postulates are supported by various experiments, some performed before and
some after Einstein first published his theory. The Michelson-Morley experiment,
described in detail in Problem 4, was the most famous such experiment. Michelson and
Morley, along with other nineteenth-century physicists, assumed that light would be -
have like sound waves, in the sense that there would be a privileged reference frame for
the propagation of light. This reference frame would be like a material medium for
light waves, but it would be present even in a vacuum, that is, when no matter was
present. This strange and elusive medium was called “the ether” (not to be confused
with ether gas, an anesthetic). Michelson and Morley believed that the earth, at least
some time during the year, would move relative to the ether. They were determined to
detect this relative motion, using sensitive optical interference methods. (The instru-
ment they used, a Michelson interferometer, was described in Chapter 26, Problem 21).

1
*
��0�!�0�



770 CHAPTER 27 Relativity

Many versions of the Michelson-Morley experiment were performed, beginning in
1887 and extending into the 1900s. Some of these experiments used a terrestrial light
source; others used sunlight—a moving light source. None of the experiments was
able to detect motion relative to the ether. In an effort to keep the ether concept,
various explanations for the negative results were proposed. Some physicists believed
that the ether somehow clung to the earth, so that no matter how the earth’s motion
changed throughout the year, it was always in the privileged ether reference frame. In
a way this was a return to a geocentric view of the universe. However, all such expla-
nations were shown to be inconsistent with various experimental observations. Even-
tually physicists became convinced that no one would ever find a way of detecting
motion relative to the ether and that indeed there was no ether, that is, no privileged
reference frame. The principle of relativity prevailed.

Time Dilation
In this section we will use Einstein’s postulates to show how observers in relative
motion measure different values for the duration of any sequence of events. Meas-
urement of a time interval depends on the observer’s reference frame. For example,
suppose that a football game in Denver lasts 3.00 hours as measured on a clock at the
football stadium (or on any other good clock in the earth’s reference frame). As we
shall see in Example 1, if the game is viewed by observers in a reference frame
moving at a speed of 2.70 � 108 m/s relative to the earth, the game lasts 6.88 hours.
We can derive an equation relating time intervals measured in different reference

frames by considering the following experiment. Let a laser emit a pulse of light that
travels a distance D and is then reflected by a mirror back toward the laser (Fig. 27–8).
The light pulse is absorbed by a detector adjacent to the laser. Since the light travels a
distance 2D at a speed c, the time elapsed between emission and absorption is given by

�t0  (27–1)

A time interval such as this, measured on a single stationary clock, is referred to as
a proper time interval and is denoted by the zero subscript on the �t. We shall refer
to the arrangement of laser, mirror, and detector in Fig. 27–8 as a “light clock.”
The emission and absorption of light by a light clock can also be viewed by an

observer in a reference frame relative to which the light clock is moving to the right at
velocity v. Fig. 27–9 shows the emission, reflection, and absorption of a pulse of light,
as seen by such an observer. The observer’s reference frame is an inertial frame.
Therefore, according to Einstein’s postulates, (1) the laws of physics apply (in partic-
ular the law of reflection), and (2) light travels at speed c. Relative to this reference
frame, the light must travel a longer, diagonal path, and so the time interval between
emission and absorption is greater than that in the other reference frame, in which the
light travels vertically back and forth. The time elapsed between emission and absorp-
tion, during which light travels the distance 2�, is given by

�t 

Using the figure and applying the Pythagorean theorem, we see that

�  �D�2�
� (�v� ��t/�2�)2�

Inserting this expression for � into the preceding equation, we obtain

�t 
2�D�2�
� (�v� ��t/�2�)2�
**

c

27–2

2D
*
c

2�
*
c
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The quantity �t appears on both sides of this equation. Squaring both sides and
solving for �t, we find

�t 

Substituting 2D/c �t0 (Eq. 27–1), we obtain

�t  (27–2)

2D/c
**
�1� �� (�v�/c�)2�

�t0
**
�1� �� (�v�/c�)2�

Fig. 27–9 A moving light clock. During the time interval �t, light travels a distance 2� while
the laser, mirror, and detector travel a distance v �t.

Fig. 27–8 A pulse of light is emitted by
a laser, reflected by a mirror a distance D
from the laser, and absorbed by a detector
next to the laser. The pulse travels from
laser to detector in time 2D/c. We call this
arrangement a “light clock.”
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The time interval �t is not a proper time interval; �t is measured on a system of two
synchronized clocks—one at the point where the pulse is emitted and a second at the
point where the pulse is absorbed. Eq. 27–2 expresses the relationship between the two
different measurements of the elapsed time of any sequence of events, as seen by
observers in different reference frames. It is important to remember that �t0 represents
a proper time interval measured on a single clock and �t represents the corresponding
time interval on a system of clocks.

EXAMPLE 1 Moving Clocks Run Slow

(a) A football game in Denver lasts 3.00 hours. The game is
viewed by space travelers in a convoy of spaceships, which
happen to be passing the earth as the game is in progress. The
spaceships all move at a constant velocity of 2.70 � 108 m/s
relative to the earth’s surface. How long is the game in the
reference frame of the spaceships? (b) A clock on one of the
spaceships is compared with clocks in the earth’s reference
frame. How much time has elapsed in the earth’s reference
frame while 3.00 hours elapses on the spaceship clock?

SOLUTION (a) We apply Eq. 27–2 using �t0 � 3.00 hours,
since this is a proper time interval measured on a single clock at
the game. This clock and the earth move at a speed v � 2.70 �
108 m/s relative to the space travelers, who measure the game’s
duration to be

�t � �

�1� �� �����2

� 6.88 h

Fig. 27–10 shows how the beginning and end of the game are
seen (close up) by different members of the space convoy.

(b) Now the proper time interval �t0 � 3.00 hours is measured
on the clock on one of the spaceships while the time interval �t
is measured in the earth’s reference frame. The spaceship clock
moves at a speed of 2.70 �108 m/s relative to earth. The calcu-
lation is identical to that in part (a), and so we conclude that
6.88 hours elapses in the earth’s reference frame. Fig. 27–11
shows the spaceship clock compared with two clocks in the
earth's reference frame.

Note the symmetry of the situation. Relative to either inertial
reference frame, a moving clock runs slow!

2.70 �108 m/s
��
3.00 �108 m/s

3.00 h
���

�t0
��
�1���(�v�/c�)2�
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EXAMPLE 1 Moving Clocks Run Slow—Continued

Fig. 27–10 (a) The beginning of a football game is witnessed by an observer on board a passing spaceship (A), part of a convoy of space-
ships. Relative to the convoy, “spaceship Earth” moves at a constant velocity of 2.70 � 108 m/s to the right. (b) The end of the football
game is witnessed by an observer on board spaceship Y.

Fig. 27–11 (a) Spaceship A compares its clock with an earthbound clock. (b) Spaceship A compares its clock with a clock located on a
distant planet colonized by earth. The planet is assumed to be at rest with respect to earth, and the planetary clock is synchronized with the
earth clock.

(b)

(a)

(a)

(b)
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The time dilation formula applies to clocks moving at any speed whatsoever.
However our experience with the relativistic phenomenon of time dilation is very
limited because we never see clocks or any material bodies moving at speeds
approaching the speed of light. Suppose a clock is on board a high-speed aircraft
moving at 900 m/s (2010 mi/hr). The time dilation factor for this clock has the value

  1 
 4.50 � 10–12

�1� �� �����2
The time dilation factor differs from one by only 4.50 � 10�12. This means that for all
practical purposes you can neglect the relativistic time dilation effect; that is, �t 	 �t0.
Measurements of time by the clock on the aircraft and measurement by a system of
clocks on earth give the same value. If the pilot compares his watch with an earth -
bound clock before and after his flight, he would not be able to observe a difference in
the readings.
From the preceding examples you might suppose that meaningful applications of

relativity are limited to futuristic or fantasy situations. Such is not the case. Physicists
in research labs all over the world routinely use the theory of relativity in describing
the motion of electrons or other subatomic particles. Spaceships traveling near the
speed of light are only fantasy today. But subatomic particles do move at relativistic
speeds, as in the following example.

900 m/s
**
3.00 � 108 m/s

1
**
�1���(�v�/c�)2�

1
***

EXAMPLE 2 Muon Lifetimes

Muons are elementary particles with the same charge as an
electron and a mass 207 times the mass of an electron. Muons
are unstable, with a mean lifetime of 2.2 �10�6 s, as measured
in their own rest frame. This means that when muons are
created in the laboratory by the decay of some other particle, if
the muons are either at rest or moving at much less than the
speed of light, the muons will decay into other particles, on the
average 2.2 � 10�6 s after they are created. Muons created in a
high-energy accelerator move at a speed 99.9% of the speed of
light, relative to the lab. How long (on the average) after the
muons are created do they decay, as measured in the lab?

SOLUTION Applying Eq. 27–2, we find for the mean life-
time, measured in the laboratory:

�t � �

� 49 �10�6 s

Experimental measurement of high-energy muon lifetimes are
in complete agreement with values calculated using the time
dilation formula.

Muons are created naturally by cosmic rays in the earth’s
upper atmosphere. These muons move at very high speed and
therefore experience considerable time dilation. Only because
the time dilation effect is so large is it possible for muons to live
long enough to reach the surface of the earth, where they may
be detected.

�t0
��
�1���(�v�/c�)2�

2.2 �10–6 s
������
�1���(0.�999)2�
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EXAMPLE 3 The Twin Paradox

Twins part on their twentieth birthday; one remains at home on
earth, and the other leaves the earth on a long, high-speed space
journey. The spaceship quickly accelerates* to a speed of 0.95c,
maintains this speed for time �t0/2 (ship time), quickly turns
around, and travels home at a speed of 0.95c, arriving at time
�t0, as measured on the ship and by the astronaut’s biological
clock. While time �t0 has elapsed for the astronaut, the time
elapsed for his stationary brother is given by Eq. 27–2:

�t � � � 3.2 �t0

Thus 3.2 years have elapsed on earth for every year on the
spaceship. If the astronaut arrives home at age 40, after 20
years of travel, the earthbound twin is 84 years old, having
aged (3.2)(20) � 64 years during his brother’s absence (Fig.
27–12).

A paradox arises if one attempts to describe the space flight
from the reference frame of the spaceship. Relative to the
spaceship the earthbound twin is traveling first away from the
ship at 0.95c and later toward the ship at 0.95c. The astronaut
applies Eq. 27–2, computing his elapsed time corresponding to
the time elapsed for his moving earthbound brother:

�t � � 3.2 �t0

The astronaut predicts that 3.2 years elapses on the spaceship
for every year elapsed on earth. So, if the astronaut returns to
earth after a journey of 20 years (ship time), he expects to find
that his twin has aged only 20 years/3.2 � 6.3 years; that is, the
astronaut predicts that when he is 40, his earthbound twin will
be only 26, not 84! These contradictory predictions cannot both
be correct. Resolve the paradox.

*To reach relativistic speeds without having the astronaut experience
extreme acceleration, the spaceship would have to accelerate over a period
of a few years. See Problem 33.

Fig. 27–12 Twins part and years later reunite.

SOLUTION The difficulty lies in the asymmetry between the
twins, introduced during the periods of acceleration of the space-
 ship. It is these accelerations that prevent the spaceship from
being inertial. Only the earthbound twin remains in an inertial
reference frame continously, and therefore only his cal culations
are to be trusted. The astronaut does arrive home much younger
than his twin brother. The acceleration of the spaceship is some -
how responsible for the slower aging of the astronaut.

Although the twin experiment described in this example
has never been performed, in 1971 a rather direct experimental
verification of the effect was accomplished by Hafele and
Keating. Time intervals were measured on two identical cesium
atomic clocks. One of the clocks was flown around the world on
commercial airlines. The time dilation formula predicted that
the traveling clock should run slow by (184 � 23) � 10�9 s.
When compared to the stationary clock, the traveling clock
was found to have lost (203 �10) �10�9 s, in complete agree-
ment with the prediction of time dilation.

�t0
		
�1���(�v�/c�)2�

�t0
		
�1���(0.95)2�

�t0
		
�1���(�v�/c�)2�



Fig. 27–13 A rod moves to the right at
speed v relative to observer O.

Length Contraction
In this section we shall show how distances traveled at very high speed appear to the
traveler to be shortened or contracted. Such length contraction could theoretically make
possible travel to stars hundreds of light years away in a voyage lasting only a few
decades. For example, suppose that, in an attempt to reach an extraterrestrial civiliza-
tion, a space expedition is launched from earth to the star Antares, 424 light-years
away. Even if a spaceship were to travel at nearly the speed of light, the trip would take
about 424 years, as measured in the earth’s reference frame. It might then seem
impossible for anyone to live long enough to make such a journey. But remember,
moving clocks run slow. So, although approximately 424 years elapses on earth, the
duration of the trip could be much shorter, as measured on the spaceship, if it is
moving fast enough. Suppose, for example, the average speed is 0.999c. The trip’s
duration �t0 observed on the spaceship is related to the earth-measured time interval
�t  424 years by the time dilation formula (Eq. 27–2):

�t 

Solving for �t0, we find

�t0  �1� �� (�v�/c�)2� �t  �1� �� (�0�.9�9�9�)2� (424 years)
 19.0 years

From the reference frame of the spaceship, the behavior of clocks on board is entirely
normal. An observer on the spaceship sees the earth and Antares* moving relative to
the spaceship at nearly the speed of light. And yet the trip takes only 19 years. The
observer therefore concludes that the distance from earth to Antares is approximately
19 light-years, not 424 light-years. From the reference frame of the spaceship, the
distance from earth to Antares contracted from 424 light-years to 19 light-years after
the spaceship left the earth and accelerated to a very high velocity.
The preceding example illustrates that measurement of length, like measurement of

time, depends on the reference frame of the observer. We shall now obtain a general
formula for length contraction. When the length of a body (or a system of bodies) is
measured in the reference frame in which the body is at rest, the measurement can
proceed in the usual way—by comparison of the length with a standard, say, a meter
stick. We refer to this length, measured in the usual way in the body’s rest frame, as a
proper length, and denote it by �0.
Now suppose the body is moving parallel to its length, relative to an observer

who attempts to measure its length. To be specific, we can think of the body as a rod
moving to the right at speed v, relative to an observer O (Fig. 27–13). A very simple
way for the observer to measure the rod’s length is to first measure the proper time
interval �t0 elapsed on the observer’s clock as the rod passes. The rod’s length �
must equal the product of the rod’s speed and the elapsed time.

�  v �t0 (27–3)

The corresponding time interval �t, measured on a system of clocks attached to the
moving rod, is related to �t0 by Eq. 27–2:

�t 

or
�t0  �t �1���(�v�/c�)2�

*Although Antares is not at rest with respect to earth, its velocity is much less than the speed of light, only
a few thousand meters per second.

27–3

�t0
**
�1���(�v�/c�)2�

�t0
**
�1���(�v�/c�)2�
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Fig. 27–14 Relative to the rod, observer
O moves to the left at speed v.

77727–3 Length Contraction

Substituting this expression for �t0 into Eq. 27–3, we obtain

�  v �t �1���(�v�/c�)2�

From the reference frame of the rod, the observer travels the length �0 of the rod at
speed v in the time interval �t (Fig. 27–14). Thus

�0  v �t

Substituting �0 for v �t in the preceding equation, we obtain the length-contraction
formula:

�  �0 �1���(�v�/c�)2� (27–4)

The length-contraction formula applies not only to the length of a single rigid
body, but also to the distance between two bodies at rest (or nearly at rest) in a single
reference frame. Although most stars in our galaxy are moving relative to earth at
speeds that are quite large by terrestrial standards (on the order of thousands of meters
per second), these speeds are quite small compared to the speed of light. Thus the
length-contraction formula can be applied to the distance from earth to these stars, as
in the following example.

EXAMPLE 4 Relativistic Contraction of a Meter Stick

Find the length of a meter stick, as measured by an observer,
relative to whom the meter stick is moving parallel to its length
at a speed of 0.95c.

SOLUTION Applying Eq. 27–4, we find

� � �0 �1���(�v�/c�)2� � (1 m)�1� �� (�0�.9�5�)2� � 0.31 m

� 31 cm

EXAMPLE 5 Relativistic Contraction of an Astronomical Distance

The proper distance between earth and Antares is 424 light-
years. Find the distance between the two as seen by an observer
traveling between the two bodies at a speed of either 0.900c
or 0.999c.

SOLUTION Applying Eq. 27–4, at a speed v � 0.900c,
we find

� � �0 �1���(�v�/c�)2� � (424 LY)�1� �� (�0�.9�0�0�)2�

�185 LY

At a speed v � 0.999c, we find

� � (424 LY)�1� �� (�0�.9�9�9�)2�

�19.0 LY

This book is licensed for single-copy use only. It is prohibited by law to distribute copies of this book in any form.



Fig. 27–15 Meter sticks in relative
motion.
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It is important to note that only lengths parallel to the direction of motion are
contracted. Lengths perpendicular to the direction of motion are unaffected by the
motion. To see that this must be so, consider two parallel meter sticks, A and B, in rela-
tive motion, with a relative velocity directed perpendicular to their lengths (Fig.
27–15). The position of the ends of the meter sticks can be compared as they pass.
Observers in the reference frame of either meter stick must agree if the two lengths
differ; that is, if A is shorter than B, all would see this contraction of A relative to B.
But such contraction would violate the principle of relativity. If relativity predicted that
A contracted relative to B, then the same law of contraction, applied in the reference
frame of A, would mean that B should be contracted relative to A. Since all observers
must agree on which meter stick is shorter, the only possible answer is that neither is
shorter. The lengths are the same.

EXAMPLE 6 Observers Moving in Perpendicular Directions

Find the distance from the earth to the moon, as measured by
observers O and O�, each of whom are in the spacecraft moving
relative to the earth at a speed of 0.80c, as indicated in Fig.
27–16.

SOLUTION For observer O, the earth-moon system is
moving at a velocity of 0.80c, directed along the line from the
earth to the moon, that is, parallel to the length to be measured.
We apply Eq. 27–4, and find that observer O measures a length

� � �0 �1� �� (�v�/c�)2� � (3.8 � 108 m)�1� �� (�0�.8�0�)2�

� 2.3 � 108 m

For observer O� the motion of the earth and moon is to the left,
perpendicular to the length to be measured. Therefore O� meas-
ures the same length as in the earth’s reference frame:

� � �0 � 3.8 � 108 m

Fig. 27–16
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Relative Velocity
Suppose that an object on board a spaceship moves at a velocity u� relative to the
spaceship, which in turn is moving at velocity v away from the earth (Fig. 27–17).
Relative to the earth, the object in the spaceship is moving away from the earth at a
velocity u , which depends on the values of u� and v. But contrary to what one would
intuitively expect, the value of ux is not equal to ux� 
 vx. The rule for determining rela-
tive velocities, learned in Chapter 3, is not correct when speeds approach the speed of
light. Einstein showed that, in general, ux is given by

ux  u�x 
 vx

1 
 (27–5)

Problem 37 outlines a derivation of this equation. We shall see in the following
example that if either u� or v is much less than c, this equation reduces to the usual
nonrelativistic result:

ux 	 ux� 
 vx (if u� �� c or v �� c)

Fig. 27–17 The velocity u of the object relative to earth depends on its velocity u� relative to
the spaceship and on the velocity v of the spaceship relative to earth.

27–4

ux� vx
*
c2

EXAMPLE 7 Addition of Nonrelativistic Velocities

Suppose that a rocket is fired from a spacecraft at a velocity
ux� � 2.00 � 103 m/s as the spacecraft moves away from the
earth at a velocity vx � 3.00 �103 m/s. Find the velocity of the
rocket, relative to the earth.

SOLUTION Applying Eq. 27–5, we find

ux � �

1 + 1 + 

� 5.00 �103 m/s

To an excellent approximation, ux equals the sum of velocities
ux� and vx because each of these velocities is much less than the
speed of light.

(2.00 �103 m/s)(3.00 �103 m/s)
����

(3.00 �108 m/s)2
ux�vx
�

c2

2.00 �103 m/s � 3.00 �103 m/sux� � vx
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The relative velocity formula (Eq. 27–5) applies to light as well as to material
bodies, as illustrated in the following example.

EXAMPLE 8 Light From a Moving Spaceship

As a spaceship moves away from the earth at velocity v, it
emits a pulse of laser light in the forward direction. Show that
the velocity of the light, relative to earth, equals c, independent
of the velocity of the spaceship, in accord with Einstein’s
second postulate.

SOLUTION Applying Eq. 27–5, we find

ux � � �

1 + 1 + 

� c

c � vx
�

c

cvx
�

c2

ux�vx
�

c2

c � vxc � vxux� � vx

EXAMPLE 9 Relative Motion of Two Spacecraft

Spacecraft A and B both approach a planet at half the speed of
light, as shown in Fig. 27–18. Find the velocity of B relative to A.

SOLUTION Relative to A, the planet is approaching at half
the speed of light (Fig. 27–19). Since the velocity is along the
negative x direction, vx � �c/2. To find the velocity of B relative
to A, denoted by ux, we apply Eq. 27–5, using ux� � �c/2 for
the velocity of B relative to the planet.

ux � �

1 + 1 + 

� � – c

Fig. 27–18

Fig. 27–19
4
�
5

–c
�
1 + $

(–c/2)2

�
c2

ux�vx
�

c2

�c/2 � c/2ux� � vx



78127–5 Relativistic Mass and Energy

Relativistic Mass and Energy
We have found that both time and length are relative, not absolute, quantities. It
should therefore not be too surprising to find that mass and energy are also relative
quantities—that measured values of mass and energy depend on the reference frame
of the observer. Einstein used the theory of relativity to derive formulas for the mass
and energy of moving bodies. Einstein showed that, if a body has mass m0 when it is
at rest, then when the body moves at a speed v, its mass m is given by

m  (27–6)

Fig. 27–20 shows how the relativistic mass of a body approaches infinity as its speed
approaches the speed of light. Since a body’s mass is a measure of its resistance to
being accelerated, infinite mass means infinite resistance to acceleration. Thus the
closer a body comes to the speed of light, the harder it is to accelerate further. The
speed of light therefore is a fundamental speed limit, imposed by nature. A body can
come very close to the speed of light but can never reach or exceed it.
From Fig. 27–20 we see that only for very high speeds will a body have a mass that

differs significantly from its rest mass m0. Thus in ordinary applications of mechanics
we don’t have to be concerned about changing mass. For example, the mass of a car
does not change measurably, as it is accelerated from 0 to 50 km/h.

Fig. 27–20 The dependence of the mass of a body on its speed.

27–5

m0
**
�1� �� (�v�/c�)2�

EXAMPLE 10 The Mass of a Moving Electron

Find the mass of an electron moving at a speed of 0.999c.

SOLUTION Applying Eq. 27–6, we find that the electron’s
mass increases from its rest mass m0 � 9.11 �10�31 kg to

m � �

� 22.4m0 � 22.4(9.11 �10�31 kg)

� 2.04 �10�29 kg

m0
��
�1� �� (�0.999)2

m0
��
�1� �� (�v�/c�)2�



One of the most interesting predictions of the theory of relativity is that mass is a
form of energy. This result is expressed by Einstein’s famous equation

E  mc2 (27–7)

This equation relates a body’s total energy E to its relativistic mass m. The two quan-
tities are proportional. The energy of a body equals its mass times a constant (c2). So
it is fair to say that mass and energy are equivalent, or that mass is a form of energy.
In deriving this equation, Einstein united two fundamental principles. Before

Einstein’s discovery, conservation of mass and conservation of energy were believed
to be two unrelated laws of nature. But Einstein showed that mass and energy are
proportional, and so conservation of mass implies conservation of energy.
We can express a body’s energy in terms of its rest mass m0 and velocity v by

substituting into the preceding equation for energy the expression for relativistic mass
(Eq. 27–6).

E  (27–8)

When a body is at rest, m → m 0 and the energy reduces to m0c2, which we refer to as
rest energy and denote by E0.

E0  m0c2 (27–9)

This equation predicts that a body of moderate mass has an enormous amount of
energy. For example, a 1 kg mass at rest has energy E0  (1 kg)(3 � 108 m/s)2  9 �
1016 J—thousands of times greater than the energy released in an atomic bomb. How
is it then that we don’t notice the tremendous rest energy stored in ordinary objects? As
long as nothing changes, there is nothing to notice. Only when a significant amount of
rest energy is converted to some other form is the energy observed. For example, when
matter and antimatter meet, both the matter and antimatter are annihilated and rest
energy is completely converted to radiant energy. However, this has never been
observed except on the level of subatomic particles. For example, an electron and its
antimatter particle, a positron, can mutually annihilate, producing two photons with
about 10�13 J of radiant energy.
The most dramatic large-scale conversion of mass into radiant energy occurs in

transformations of nuclei in bombs, as described in Chapter 30. In the explosion of an
atomic bomb about one thousandth of the rest energy is converted to radiant energy
and heat. Even in ordinary combustion processes, such as the combustion of gasoline,
the total rest mass of the products of combustion is slightly less than the original rest
mass. The difference in rest mass is used to produce heat. However, the heat released
is small enough that the reduction in rest mass is not noticeable, as we shall see in the
following example.

m0c2
**
�1� �� (�v�/c�)2�
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EXAMPLE 11 Loss of Rest Mass by Burning Gasoline

How much rest mass is lost during combustion of 1 liter of
gasoline? Gasoline has a density of 0.74 kg/L and a heat of
combustion of 3.4 �107 J/L.

SOLUTION The reduction in the gasoline’s rest energy
equals the heat of combustion. Applying Eq. 27–9, we find an
extremely small loss of mass.

m0 �

�m0 � �

� �3.8 �10�10 kg

�3.4 �107 J
��
(3.0 �108 m/s)2

�E0
�
c2

E0
�
c2



EXAMPLE 12 A Small Relativistic Correction to Kinetic Energy

Find the kinetic energy of a body having a rest mass of 2.0 kg
moving at a speed of 0.10c.

SOLUTION Applying Eq. 27–11, we find

K � m0c2 � �1�
� (2.0 kg)(3.0 �108 m/s)2� � 1�
� 9.1 �1014 J

If we wish to calculate the kinetic energy by applying the ap -
prox imate classical expression (Eq. 27–12), we obtain

K � m0v2 � (2.0 kg)(3.0 �107 m/s)2

� 9.0 �1014 J

The error in this approximate calculation is only about 1%.
Generally when v is no more than 0.1c, there is little error in
using classical formulas.

1
�
2

1
�
2

1
��
�1� �� (�0.�10)2�

1
��
�1� �� (�v�/c�)2�

EXAMPLE 13 Energy of an Accelerated Electron

An electron is accelerated from rest through a potential dif fer-
ence of 1.00 � 106 V, so that it has a kinetic energy of 1.00 �
106 eV, or 1.00 MeV. Find the electron’s rest energy, final total
energy, and final speed.

SOLUTION Applying Eq. 27–9, we find the rest energy.

E0 � m0c2 � (9.11 �10�31 kg)(3.00 �108 m/s)2

� 8.20 �10�14 J

We can express this result in units of MeV, using the conversion
1 MeV �106 eV �1.60 �10�13 J.

E0 � (8.20 �10�14 J)� �
� 0.51 MeV

Next we calculate the electron’s final total energy, using Eq.
27–10:

K � E � E0

or

E � K � E0 �1.00 MeV � 0.51 MeV

�1.51 MeV

Finally we relate energy to speed (Eqs. 27–7 to 27–9).

E � mc2 � �

or

�1� �� (�v�/c�)2� � � � 0.338

Solving for v/c, we find

v/c � 0.941

or

v � 0.941c � 0.941(3.00 �108 m/s)

� 2.82 �108 m/s

1 MeV
��
1.60 �10�13 J

0.51 MeV
��
1.51 MeV

E0
�
E

E0
��
�1� �� (�v�/c�)2�

m0c2
��
�1� �� (�v�/c�)2�

The difference between the energy of a moving body and the energy that body
would have at rest is defined to be kinetic energy, K.

K  E � E0 (27–10)

Thus
K  mc2 � m0c2

or

K  m0c2� � 1� (27–11)

This expression for kinetic energy reduces to our previous definition of kinetic energy,
K  mv2 (Eq. 7–6), when v �� c. See Problem 30.

K 	 m0v2 (when v << c) (27–12)1
*
2

1
*
2

1
**
�1� �� (�v�/c�)2�
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A Closer Look

Soon after Einstein developed his “special
theory of relativity,” he became convinced
that the principle of relativity should
extend beyond the special case of inertial
reference frames to any reference frame
whatsoever. He then set out to develop a
more general theory in which the limita-
tion to inertial reference frames could be
removed. Roughly 10 years later he suc -
ceeded in formulating such a theory—the
general theory of relativity.
Einstein was driven by his belief that

the laws of physics should apply to all ob -
servers in all reference frames. There
seemed to be no obvious reason why those
reference frames that are inertial should
be so. The singling out of special reference
frames seemed to endow space itself with
an absolute quality that Einstein did not
believe it possessed.

Fig. 27–A Two balls of clay in inter -
galactic space, viewed from an inertial
 reference frame. The ball on top spins
and bulges outward.

Consider, for example, the following
experiment. Two balls of potter’s clay are
located in intergalactic space, far from all
matter, so that nothing exerts force on the
balls, which we view from an inertial refer-
ence frame. Suppose that one of the balls is
spinning about an axis passing through the
centers of both balls (Fig. 27–A). The clay in
the spinning ball pushes outward, just as it
would on a spinning potter’s wheel on
earth. Thus the spinning ball of clay bulges,
while the stationary ball is spherical. (The
same effect is seen in spinning planets: the
earth bulges slightly at the equator).
Consider the relative motion of the two

balls. Each is rotating with respect to the
other. With this symmetry of motion, why
is it that one ball bulges and the other does
not? We say that the spherical ball is at
rest in an inertial reference frame, while
the bulging ball, relative to that inertial
reference frame, is spinning and its parts
are therefore accelerated. But what is it
that makes the reference frame in which
the one sphere is at rest an inertial frame?
Is it space itself?
Ernst Mach was the first to suggest an

answer to this kind of question—an
answer that was helpful in guiding Einstein
to the general theory. According to Mach,
we must look to the distant matter in the
universe that we had assumed to have no
influence on the balls of clay. Only one of
the balls bulges because only one is accel-
erated with respect to that distant matter.
The other ball of clay is at rest (or moving
at constant velocity) with respect to the
distant stars. Mach’s ideas suggested to
Einstein that it really is only relative motion
that counts after all.
One of Einstein’s early insights on the

road to discovering the general theory was 

Fig. 27–B To an observer outside a freely
falling elevator, a passenger inside is accel-
erated by the force of gravity. But so long
as the elevator continues to fall, it is impos-
sible for the passenger to detect the
earth’s gravity by any experiment confined
to the elevator.

that the observed effects of gravity depend
on the reference frame of the observer.
For example, suppose you are in a glass-
walled elevator and the cable suddenly
snaps, so that both you and the elevator
are in free fall (Fig. 27–B).
An observer outside the elevator sees

you falling freely because there is nothing
to support you—no opposing force to
balance your weight. But within the elevator
(your freely falling reference frame), you
see things differently.

General Relativity



A Closer Look

Fig. 27–C Astronauts in training experience
weightlessness.

You do not see yourself falling relative to
the elevator, and you do not “feel” your
own weight.* In a freely falling elevator you
feel just as weightless as you would in
intergalactic space. Astronauts in an earth
satellite such as Skylab (Fig. 27–C) experi-
ence weightlessness for precisely this
reason: they are continuously falling as they
orbit the earth. Not only do you feel no
weight during free fall, but also it is impos-
sible to detect gravity by any experiment
confined to a freely falling reference frame.
For example, if you drop an object, it falls
with you. Relative to the reference frame, it
does not move.

*You can experience the feeling of partial weight -
lessness very briefly even in a functioning ele -
vator, for example, when it is moving up and
quickly comes to a stop. The feeling of weight-
lessness is actually just the absence of the normal
feeling of weight we are accustomed to. This
feeling of weight is caused by the compression of
our bodies’ tissue and the pressing of our internal
organs against each other. The usual contact and
compression are caused by the opposing forces
of earth’s gravity (your weight) and whatever solid
matter such as a chair or a floor that prevents
you from falling. In free fall there is no such
compression.

Einstein postulated that in any refer-
ence frame freely falling in a uniform grav-
itational field, all the laws of physics would
be the same as in an inertial reference frame
with no gravitational field present. Einstein
claimed that the two reference frames
would be completely equivalent. He called
this principle the equivalence principle.

Einstein claimed further that in an iso -
lated region of space, a reference frame
accelerating with respect to an inertial ref -
erence frame is completely equivalent to
an inertial reference frame with a gravita-
tional field present (Fig. 27–D). In other
words, not only can we effectively eliminate
a gravitational field by falling in it, we can

Fig. 27–D Two equivalent reference frames: (a) A spaceship accelerating at 9.8 m/s2;
(b) A reference frame at rest on earth. Any experiment confined to one or the other of
these two reference frames gives exactly the same results, according to the equivalence
principle.

(b)(a)



also effectively create a gravitational field by
accelerating in a field-free region of space.
Einstein used his equivalence principle as

a first step in developing his general theory
of relativity. Unforunately, the theory is too
mathematically complex to describe in de -
tail. However, we can use the equivalence
principle to understand one of the key
experimental predictions of the general
theory: the effect of a gravitational field on
the path of a light ray. Consider the fol -
lowing experiment. A spaceship is initially
at rest in an inertial reference frame in a
field-free region of space. An observer O

inside the ship directs a laser pulse across
the ship from point P to point Q (Fig.
27–Ea). A second observer at rest in the
same reference frame, but outside the ship,
also observes the experiment through the
ship’s glass walls. Now suppose the exper-
iment is repeated, but this time the ship
accelerates upward (Fig. 27–Eb). The path
of the light ray, as seen by O′, who remains
at rest in the inertial reference frame, must
follow the same straight path as before,
and must therefore strike the wall of the
upward accelerating ship at a point R lower
than P, as indicated in the figure. This means

that, as seen by observer O, the light bends
downward (Fig. 27–Ec), a conclusion that,
according to the equivalence principle, is
the same whether O is in an accelerating
space ship or is at rest in an inertial frame
with a downward-directed gravitational
field. So we must conclude that the path of
a light ray is bent downward by a gravita-
tional field. The effect, however, is much
too small to be seen in the earth’s gravita-
tional field. Light travels far too fast for it
to drop appreciably even after traveling
great distances along the earth’s surface.

A Closer Look

Fig. 27–E (a) Observers O and O′ are both at rest in an inertial reference frame. Both observe a pulse of light travel across the stationary
spaceship from P to Q. (b)The spaceship accelerates as a laser pulse travels across. The pulse travels in a straight line, as seen by O′, and so
strikes a point R on the wall lower than P, since the wall moves up as the pulse travels across. (c) As seen by O, the path of the second laser
pulse bends downward as it travels across the ship.
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Einstein predicted that the effect could
be seen if you could view a star when the
light from it passed very close to the sur -
face of the sun on its way to the earth.
The bending of the light toward the sun
would cause a change in the apparent posi-
tion of the star. When the earth is at a
point in its orbit around the sun where the
earth, sun, and a certain star are approx -
imately aligned so that light from the star
passes very close to the sun’s surface on its
way to the earth, the position of the star
relative to other stars appears to change
(Fig. 27–F). Of course, under ordinary con -
ditions the sun’s light is much too bright for
the star’s light to be seen then. However,
during a total solar eclipse, the sun’s light is
blocked, permitting the star to be seen. A
solar eclipse is a relatively rare and exciting 

Fig. 27–F Light from a distant star bends
in the sun’s gravitational field on its way
to earth, thereby changing its apparent
position. An eclipse of the sun by the
moon allows this starlight to be seen.

natural phenomenon (Fig. 27–G). Thus great
excitement surrounded an expedition of
British scientists who set out to observe
the solar eclipse on May 29, 1919, to find
out if Einstein was right. The deflection pre -
dicted by Einstein is small, even though the
sun has a gravitational field hundreds of
times larger than earth’s.

Fig. 27–G An annular solar eclipse, as seen
in Eolia, Missouri on May 10, 1994. The earth
is somewhat closer to the sun during an
annular eclipse than during a total eclipse,
and so the sun’s disk is not entirely blocked
from view.

Einstein predicted a change in the angular
position of the star of only 1.7 seconds of
arc, or about 0.0005°. Careful measurement
of data and analysis of results were com -
pleted months after the expedition. The sci -
entists then announced that light is indeed
bent by gravity, as pre dicted by Ein stein,
and by precisely the predicted 1.7 sec onds.
Einstein became an instant celebrity.
Over the years solutions to equations

of general relativity have contributed to
our fundamental understanding of the uni -
verse. For example, based on certain rela-
tivistic solutions and some astronomical
observations, we now believe that our uni -
verse began about 10 billion years ago as a
point in space-time, an event referred to as
the Big Bang. Another prediction of the
general theory is the existence of black
holes—stars that collapse under their own
gravity and generate fields so intense that
nothing can escape, not even light (Fig.
27–H). In May, 1994, improved photographs
from the Hubble Space Telescope gave the
most convincing evidence yet for the exis-
tence of black holes.

Fig. 27–H Artist’s concept of a black hole.



The early life of Albert Einstein, the man
who was to change forever our concepts
of space and time, gave no hint of genius.
Einstein was born in the town of Ulm, in
southern Germany, on March 14, 1879, to a
family of small-businessmen, not known for
great learning or revolutionary outlook. As
a child, Albert did not seem gifted. Indeed
he was very slow in learning to talk. School
was a boring and depressing experience
for him. He was a daydreamer who did not
accept the attitudes his strict, convention-
bound teachers attempted to impart.
Surprisingly, it may have been his reluc-

tance to part with his seemingly childish
ways of looking at the world that made
possible the eventual blossoming of his
genius. Later in life, he was to remark that
the main requirement for creativity in sci -
ence is not knowledge but rather a fresh-
ness of vision, a childlike openness in
seeing the patterns of nature unfettered by
the false and narrow traditional assump-
tions that hinder most thinking. As he
wrote in his autobiography, The World As I
See It: “We have forgotten what features in
the world of experience caused us to
frame concepts, and we have great diffi-
culty in representing the world of experi-
ence to ourselves without the spectacles
of the old-established conceptual inter-
pretation.”

In his teens, Einstein fantasized about
questions that would have seemed foolish
to most adults—questions such as: “What
would the world look like if I rode on a
beam of light?” Thanks to an uncle, who
aroused the boy’s interest in mathematics,
Albert began to give his speculations math-
ematical form. He later continued his edu -
cation in Switzerland and enrolled at the
Swiss Federal Polytechnic School in Zürich.
Once again, however, he found formal
schooling deadening, and he turned his
attention to the original writings of earlier
scientists, especially Maxwell, whom he
admired. Academically he managed to do
just enough to satisfy his instructors as to

his basic competence, and he received his
diploma in 1900.
After searching without success for a

teaching post, he finally took a rather rou -
tine job at a patent office in Berne, the
Swiss capital. Fortunately, this position left
him enough time to begin to work out
some of the profound relationships in
nature he had glimpsed early on.
In the year 1905, he wrote and pub -

lished four scientific articles that were to
change the science of physics forever. In
one of these articles, he established on a
sure footing the atomic theory of matter
through his explanation of Brownian
motion. In another, he carried the earlier
insights of Max Planck to new heights with
the first formulation of a photon theory of
light. As if these two breakthroughs were
not enough, in two other papers he dazzled
the scientific world with a wholly original
theory of mass, energy, and motion—his
special theory of relativity—an attempt,
as it were, to tell the world about his imag-
inary boyhood ride on a light beam.
The catalogue of things changed by his

theory is impressive. Suddenly, mass and
energy were no longer unalterably different
kinds of things, but the same thing in dif fer -
ent forms, united by the famous equation
E  mc 2. Suddenly, the familiar world of
Galilean mechanics, with its simple addi-

A Closer Look

Albert Einstein



tivity of motions, was overthrown, and with
it the possibility of absolute frames of
reference. The length and mass of an object
now depended on the way in which the
object moved, especially as its speed
approached that of light, which became an
upper limit on all speeds. Not even time
could be saved from this new universe of
relativity. In short, not a single one of the
fundamental concepts of physics would
ever again mean what it had meant before.
Einstein had changed these concepts
forever. Scientists who once would have
laughed at his imaginary ride on a light
beam now had to take that ride along with
him—a ride that would leave the familiar
world unreachably far behind.
In the decade that followed, Einstein

went on to become a professor at the
University of Berlin. There, he succeeded in
formulating a general theory of relativity. In
that theory, he resolved the long-standing
puzzle of the equivalence of inertial and
gravitational mass. Einstein had formulated
a new theory of gravitation that replaced
the old established Newtonian theory.
Now gravity could be seen in terms of the
curvature of space-time.
Throughout the 1920s, Einstein con tin -

ued his attempts to unify and simplify the
laws of physics and in 1921 received the
Nobel Prize in physics. He undertook a
valiant search, one that would continue
throughout the remainder of his life, for a

unified field theory that would bring to -
gether the fundamental forces of nature—
an effort that others continue. Einstein also
offered an ongoing critique of quantum
mechanics as a complete description of
reality. He objected to the Heisenberg
uncertainty principle as creating a fuzzy
area of indeterminacy within the atom,
saying “God does not play dice with the
world.” Although it resulted in some philo-
sophical refinement of quantum theory, his
critique of quantum theory did not funda-
mentally change it, and is now generally
regarded as a misguided effort.
The rise of the Nazis to power in 1933

led Einstein to resign his position in Berlin
and to emigrate to the United States. He
soon settled at Princeton, New Jersey, and
joined the Institute for Advanced Study
there. He later became a citizen of the
United States and spent the remainder of
his life at Princeton, diligently continuing
his research and also working toward the
cause of peace and human justice until his
death in 1955.
Throughout his life, Einstein had been a

modest man, unconcerned with fame. He
dressed casually and comfortably, even
when giving lectures, often wearing an old
sweater, house slippers, and no socks. He
was loved as much for his simplicity, kind-
ness, and concern for social justice as he
was for his monumental intelligence.

Einstein in his garden.

It can be argued that Einstein’s scientific
contributions might not have been possible
without his very human personal qual i ties
—among them, his sense of the one ness of
nature, his boyish wonder, his feel ing of awe
before the beauty of the uni verse, and his
faith in our ability to grasp its workings.
He believed that “the eternal mystery of
the world is its comprehensibility.”
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