10 INFINITE SERIES

10.1 Sequences

Preliminary Questions

1. What is a4 for the sequence a, = n?

—n?

SOLUTION Substituting n = 4 in the expression for a, gives

ag =4* —4=12.

2. Which of the following sequences converge to zero?

n? " —1\"
a) ——— b) 2 c) | —
@ (b) ()<2>
SOLUTION
(a) This sequence does not converge to zero:

n? x2

lim 5 = lim = lim =——=1
n—>oop2 41 x—o00x2 41 x%001_|_L2 140
X

—_

(b) This sequence does not converge to zero: this is a geometric sequence with r = 2 > 1; hence, the sequence diverges
to oo.

(¢) Recall that if |a,| converges to 0, then a;, must also converge to zero. Here,

1\" 1\"
() ]-G)
which is a geometric sequence with 0 < r < 1; hence, (%)" converges to zero. It therefore follows that (— %)" converges
to zero.

3. Let a, be the nth decimal approximation to /2. That is,a; = 1,apy = 1.4, a3 = 1.41, etc. What is l_ilnt><> an?
n
SOLUTION lim a, = V2.
n—0o0

4. Which of the following sequences is defined recursively?
@ ap =+v4+n () by =4+b,_1

SOLUTION

(a) a, can be computed directly, since it depends on n only and not on preceding terms. Therefore aj, is defined explicitly
and not recursively.

(b) by is computed in terms of the preceding term b,,_1, hence the sequence {b,} is defined recursively.

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false
and if false, give a counterexample.

(a) If {a,} is bounded, then it converges.
(b) If {a,} is not bounded, then it diverges.
(¢) If {a,} diverges, then it is not bounded.

SOLUTION

(a) This statement is false. The sequence a;, = cosmn is bounded since —1 < coszwn < 1 for all n, but it does not
converge: since a; = cosnm = (—1)", the terms assume the two values 1 and —1 alternately, hence they do not approach
one value.

(b) By Theorem 5, a converging sequence must be bounded. Therefore, if a sequence is not bounded, it certainly does
not converge.

(c) The statement is false. The sequence a, = (—1)" is bounded, but it does not approach one limit.
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Exercises

1. Match each sequence with its general term:
ai,ar,az, aq, . .. General term
(a) %,%,%,%,... (i) cosmn

. n!
(b)y—1,1,-1,1, ... (11)2—”
©1,-1,1,—-1,... (ii) (=1)"*!
1 2 6 24 : n

(d)j,z,g,r (lV)n+1

SOLUTION

(a) The numerator of each term is the same as the index of the term, and the denominator is one more than the numerator;
hence a, = nnﬁ,n =1,2,3,....

(b) The terms of this sequence are alternating between —1 and 1 so that the positive terms are in the even places. Since
cosmn = 1 foreven n and cosmn = —1 for odd n, we have a, = cosnn,n=1,2,....

(¢) The terms ay, are 1 for odd n and —1 for even n. Hence, a,, = (—1)”'“, n=1,2,...

(d) The numerator of each term is n!, and the denominator is 2”; hence, a; = ’27—; n=1,2,3,....

In Exercises 3—12, calculate the first four terms of the sequence, starting withn = 1.
311

o

SOLUTION Setting n = 1, 2, 3, 4 in the formula for ¢, gives

3. ¢,

3l 3 32 9
Clz—:7:3’ (‘2:—:77

1! 1 2! 2

327 9 381 27
C3: = — = -, C4:—:—:—.

3! 6 2 41 24 8

5.a1 =2, ay4 =2a}-3
SOLUTION Forn =1, 2,3 we have:
ay=ajy; =2a7 —3=2-4-3=35;
a3 =ayy) =2a3 —3=2-25-3 =47
ag = azy) =2a3 —3=2-2209 — 3 = 4415.

The first four terms of {a, } are 2, 5, 47, 4415.
7. by =54 cosnmn

SOLUTION Forn =1, 2, 3,4 we have
by =5+cosmt =4;
by =5+ cos2m = 6;
bz =5+ cos3mw = 4;
by =5+ cosdmr =6.

The first four terms of {b,} are 4, 6, 4, 6.
9. cn=l—|—l—+—l—|—~-~—|—l
2 3 n
SOLUTION

13
C2=1+§=E’

11 3 1 11
G=ltyt3=3t3=%

1 1 1 11 1 25
a=ltyriti=s i1
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1. by =2, bpy=3, by=2b,_1+b,_2

SOLUTION We need to find b3 and b4. Setting n = 3 and n = 4 and using the given values for b; and b, we obtain:
b3 =2b3_1+b3_r=2b0r+b; =2-34+2=28;
by =2by_1+byg_p=2b3+bp=2-8+3=19.

The first four terms of the sequence {b,} are 2, 3, 8, 19.

13. Find a formula for the nth term of each sequence.

-1 1 23 4

— =y e b) —, -, -,
@ 7357 ® 573
SOLUTION

(a) The denominators are the third powers of the positive integers starting with n = 1. Also, the sign of the terms is
alternating with the sign of the first term being positive. Thus,

B 1 B (_1)1+1 . _ 1 B (_1)2+1 ) B 1 B (_1)3-‘1-1
=P~ BT ET T 0 BT T T
This rule leads to the following formula for the nth term:

(_1)n+l
ap = ———.
n }13

(b) Assuming a starting index of n = 1, we see that each numerator is one more than the index and the denominator is
four more than the numerator. Thus, the general term aj, is

n+1
n+5

anp =

In Exercises 15-26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. a, =12

SOLUTION We have a;, = f(n) where f(x) = 12; thus,

lim ay, = lim f(x) = lim 12 =12.
—>00 X—> 00 X—>00

—1
17, by =
12n+9
S5x —1
SOLUTION We have b, = f(n) where f(x) = ; thus,
12x +9
S5n—1 . S5x —1 5
m —— = 11Im — = —.
n—oo 12n4+9 x—>o00 12x+9 12
19. ¢, = —27"
SOLUTION We have ¢, = f(n) where f(x) = —27%; thus,
lim (—2 )= lim —27"= lim —— =0
n—oo xX—00 x—o00 22X
21. ¢, = 9"

SOLUTION We have ¢, = f(n) where f(x) = 9%; thus,

lim 9" = lim 9° = o
n—0o0 X—>0Q

Thus, the sequence 9" diverges.

n
23, ap = ——
n?+1

SOLUTION We have a, = f(n) where f(x) = ; thus,

x
\/xz—{—l’

n X 1 1 1
im ——= lim ——— = lim —(—— = lim —— = 1i = =1
ni>moo /n2 +1 xl>moo /x2 +1 xl>moo X241 xi>moo x2+1 xl>moo 1+ 1 /1+0
—x Iy vV %2

X xz
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127 42
25.an=ln( "t )

—9+4n

12x +2
SOLUTION We have a;, = f(n) where f(x) =In| ——— |; thus,
=9 +4x

. 12n 42 . 12x +2 . 12x +2
Iim n{ —— )= Ilm In{—— | =In Iim [ —— ) =1n3
n—>00 —9+4n xX—>00 —9 +4x x—00 \ =9 4 4x

In Exercises 27-30, use Theorem 4 to determine the limit of the sequence.

/ 1
27. ay = /4 + —
n

SOLUTION We have
. 1 . 1
lim 44— = lim 44 - =4
n—o00 n X—>00 X

Since 4/x is a continuous function for x > 0, Theorem 4 tells us that

1 1
lim 4+7=\/lim b4 - =+4=2
n—>oo n n—oo n

3
"
29. a, = cos~!
" <2n3 +1 )

SOLUTION We have

n3 1

lim —— =
n—oo2pd 41 2

Since cos™! (x) is continuous for all x, Theorem 4 tells us that

1 n 1 n 1 T
lim cos™ | ——— | =cos™ lim =cos (1/2) = —
n—00 23 +1 n—00 2p3 + 1 3

31. Leta, = % Find a number M such that:
n

(@) lay, — 1] <0.001 forn > M.

(b) la, — 1] <0.00001 forn > M.

Then use the limit definition to prove that lim a;, = 1.
n—od

SOLUTION
(a) We have

-1
n+1

1
n+1

n
n+1

n+1

n—(n—i—l)‘_

lan — 1] = ’ ’ =
Therefore |a;, — 1] < 0.001 provided ﬁ < 0.001, that is, n > 999. It follows that we can take M = 999.

(b) By part(a), |a, — 1| < 0.00001 provided # < 0.00001, thatis, n > 99999. It follows that we can take M = 99999.
We now prove formally that nl_i)moo ap = 1. Using part (a), we know that

1
ap, — 1| = <€,
lan — 1| T
provided n > % — 1. Thus, Let € > 0 and take M = é — 1. Then, for n > M, we have
1 1
lap, — 1] = < ——=c¢€
n+1 M+1

33. Use the limit definition to prove that lim n2=0.
n—od

SOLUTION We see that
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provided
1
n>—.
Ve
Thus, let € > 0 and take M = ﬁ Then, for n > M, we have
1 1
2 N D _
[n™=—0] = ] i < Y =e€.

In Exercises 35—-62, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it
diverges.

1 n
35. ap =10+ <—§)

SOLUTION By the Limit Laws for Sequences we have:

1\" 1\" 1\"
lim <IO+<—7> ): lim 10+ lim (—7> =10+ lim (—7> .
n—00 9 n— 00 n— 00 9 n— 00 9

Now,
Because

by the Limit Laws for Sequences,
Thus, we have

and

37. ¢, = 1.01"

SOLUTION Since ¢, = f(n) where f(x) = 1.01%, we have

lim 1.01" = lim 1.01* =00
n—o00 X—>00

so that the sequence diverges.
39. a, =21/"

SOLUTION Because 2* is a continuous function,

lim 217 = 1im 2/% = plimy—oo(l/x) _ 20 _ 1

n—o0 X—>00

1

9
41. Cp = 7'
n:

SOLUTION Forn > 9, write

on 9 9 9 9 9 9 9
Cp—= — = — « — e —. —_— e — ... A
"Tw 12 910 11 -1 n
———
call this C Each factor is less than 1
Then clearly
71
0<> <¢?
'~ ' n
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since each factor after the first nine is < 1. The squeeze theorem tells us that

on 9 9
Iim 0< lim — < lim C—=C lim —=C-0=0
n—o00 n—oo n! n—oo n n—oon
so that limy,— 0 ¢, = 0 as well.
3n2+n+2
43. ap = ———
" 2n2 -3
SOLUTION
3% 4n+2 . 3x%4x+2 3
Iim —— = lim ————— = —.
n—oo 22 _3 x—o0o 2x2_3 2
45. 4 — cosn

SOLUTION Since —1 < cosn < 1 the following holds:

We now apply the Squeeze Theorem for Sequences and the limits

1 1
lim —— = lim — =0
n—oo n n—oon

cosn __ 0

to conclude that lim
n—oo

47. d, =In5" —Inn!

SOLUTION Note that

5]’[
dp =In —
n!
so that
n n
e =~ 50 lim e = lim = =0
n! n— 00 n—o0 pn!

by the method of Exercise 41. If d;, converged, we could, since f(x) = e* is continuous, then write

lim e = ¢liMimoodn —
n—oo

which is impossible. Thus {d,,} diverges.
4 1/3

49. a, = (2 + —2>
n

1/3
SOLUTION Leta, = (2 + %) . Taking the natural logarithm of both sides of this expression yields

4N 4
nap n( +n2> 3 n( +n2)

Thus,

lim 1 = 1 l1 2 4 1/3— lim In{2 4 —11 li 2 4
pdhe e = s F ) =3 A et ) T A\t t 2
1 1
=-In@2+0)=-1In2=Im2'73.
3 3
Because f(x) = ¢ is a continuous function, it follows that
Inay _ limysoo(na,) _ 23 _ 51/3

lim a;, = lim e
n—o0 n—0oo

2 1
51. ¢y =1n nt
3n+4

SOLUTION Because f(x) = Inx is a continuous function, it follows that

. . 2x + 1 . 2x 41 2
lim ¢, = lim In =In| lim =In—-.
n—oo X—00 3x +4 x—o00 3x +4 3
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en
53. Yn = 27
SOLUTION S—',’, = (%)n and 5 > 1. By the Limit of Geometric Sequences,we conclude that lim,—, o (%)" = c0. Thus,
the given sequence diverges.

e+ (=3)"
55. Yn = 57”

SOLUTION

n _3)n _3\"
fim Y (f)n+ lim <7)

n—oo 5n n—oo \ 5 5
assuming both limits on the right-hand side exist. But by the Limit of Geometric Sequences, since
“1<— <0< ¢ <1
5 5
both limits on the right-hand side are 0, so that y, converges to 0.
.
57. a, = nsin —
n

SOLUTION By the Theorem on Sequences Defined by a Function, we have

. . T . .
lim nsin — = lim xsin —.
n— 00 n X—> 00 X
Now,
. g T
i N sin T _ (cos %) (_72) i T
lim xsin — = lim = lim ——% = lim (ﬂcos—)
X—00 x x—oo 1 X—00 _ 1 X—00 x
X x2
. b4
= lim cos— =mwcosO0=mw-1=m.
xX— 00 X
Thus,
. .
lim nsin — = 7.
n—o00 n
340
59. by = ——
T 247 4n
SOLUTION Divide the numerator and denominator by 4" to obtain
n
SOV T N
n = = T = .
Thus,
3 lim 2 -1 ; L
. . x 1 X—>00 |\ 4% 3limy 00 =~ limy 5001 3.0-1 1
lim a, = lim 5 = = — T . — - .
n— 00 =00 247 limys oo <4%+7> 21imy 00 g — limy o0 7 2-0+7 7

1 n
6l. a, = (1—}—7)
n

SOLUTION Taking the natural logarithm of both sides of this expression yields

1\" 1 ln(l—!—%)
1na,,:1n<1+f) :nln<1+7>:7.
n n

Thus,
1 d 1 1 _L)
. o In(l+y i@x ln(l—i—; 1+ 32 . 1
lim (Ing,) = lim ——* = lim = lim = lim =——=1
n— 00 x—00 1 x—00 d (1 X—00 1 x—oo14 1l 140
dx \x x2 x

Because f(x) = ¢* is a continuous function, it follows that

lim anp = lim elnan — elim,lﬁoo(lna,,) — el —
n

i e.
n—oo — 00
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In Exercises 63—66, find the limit of the sequence using L’Hopital’s Rule.

In n)?
63. a, = (nn)
SOLUTION
d 2 2Inx
Inn)? In x)2 = (Inx) 2lnx
fim 97 g @007 g @O T g
n—o00 n X—00 X xX—00 £x x—oo ] X—00 X
X
i2]nx 2 2
= lim dxd = lim £ = lim Z=0
xX—00 £x x—>o0 | X—>00 X
X

65. ¢, =n(\/n2+ 1 —n)

SOLUTION

x(\/xz—i—l—x) (\/xz—l—l—i—x)
lim n(x/nz—{—l—n): lim x( x2+1—x)= lim

n—>00 X—>00 X—=>00 x2+1+4x

d

1
= lim

#ngdL_hmlix
X—00 /x2_|_1+x X OOE/XZ-I—I-{—X X—>00 +\/)T+1

. 1 , 1 1
- ll£nc>o T 11£nc>o 1 - 2
X X X

e 'V mam

In Exercises 67-70, use the Squeeze Theorem to evaluate l_i)moo ay by verifying the given inequality.
n

1 1 1
67. 4y = ——, — <ap <
" V4 +n8 V2n4 " V2n?
4 8 1 1

is smaller than

1
~n*+n8 nt+n#

SOLUTION For all n > 1 we have n™ < n°, so the quotient
That is,

and larger than .
n8+4n8

1 1 1
an < = = ; and
P b at b2 Yl
1 1 1
an > = = .
" Vn8 +n8 /2n8 ﬁn4

1
Now, since lim —— = lim ——
n—oo /op4 n— 00 \/EnZ

69. ap = 2" +3H/" 3<q, <@ -3/ =2l/".3
soLUTION Clearly 2" + 3" > 3" for all n > 1. Therefore:

= 0, the Squeeze Theorem for Sequences implies that lim a, = 0.
n—o0

@ 43/ s gml/n 3,

Also 2" +3" < 3" 3" =2.3" 5o
@"+3m" < @3l =2l/n 3,

Thus,

3< @ +3mln <2l/n .3,
Because

Jim 2173 =3 lim 2V/" =3.1=3

and lim;,—, 50 3 = 3, the Squeeze Theorem for Sequences guarantees

lim (2" 4+ 311/ =3,
n—oo

71. & Which of the following statements is equivalent to the assertion lim a, = L? Explain.
n—>oo

(a) Forevery € > 0, the interval (L — €, L + €) contains at least one element of the sequence {a;}.

(b) For every € > 0, the interval (L — €, L + €) contains all but at most finitely many elements of the sequence {a;, }.
SOLUTION Statement (b) is equivalent to Definition 1 of the limit, since the assertion “|a;, — L| < € foralln > M”
means that L — € < a, < L + € for all n > M, that is, the interval (L — €, L + €) contains all the elements a, except
(maybe) the finite number of elements ay, ap, ..., ay.



SECTION 10.1 | Sequences 641

Statement (a) is not equivalent to the assertion 1_i>moo ap = L. We show this, by considering the following sequence:
n

1
— for odd n

N

ap =

1
1+ — forevenn
n

Clearly for every € > 0, the interval (—€, €) = (L — €, L 4 €) for L = 0 contains at least one element of {a,}, but the
sequence diverges (rather than converges to L = 0). Since the terms in the odd places converge to 0 and the terms in the
even places converge to 1. Hence, a;, does not approach one limit.

2
73. Show thata, = ZL is increasing. Find an upper bound.
ne+2
_ 32
SOLUTION Let f(x) = T Then
, 6x()c2 +2) — 3x2 . 2x 12x
O . = 5.
(x2+2) (x2+2)

f'(x) > 0 for x > 0, hence f is increasing on this interval. It follows that a, = f (n) is also increasing. We now show
that M = 3 is an upper bound for a;,, by writing:

3n® 3246 _ 3P +2) _

an:n2+2_ n2+2  n242

That is, a,; < 3 for all n.

75. Give an example of a divergent sequence {a,} such that lim |a,| converges.
n—o0

SOLUTION Leta, = (—1)". The sequence {a,} diverges because the terms alternate between +1 and —I; however, the
sequence {|a, |} converges because it is a constant sequence, all of whose terms are equal to 1.

77. Using the limit definition, prove that if {a, } converges and {b, } diverges, then {a, + b, } diverges.

SOLUTION We will prove this result by contradiction. Suppose lim;,— o0 @, = L1 and that {a,, + b,} converges to a
limit L. Now, let e > 0. Because {a;, } converges to L1 and {a, + by, } converges to L, it follows that there exist numbers
M1 and M» such that:

€
|a,,—L1|<§ foralln > My,
€
| (an +bn)_L2|<§ foralln > M,.
Thus, for n > M = max{M, M,},

€ €
lan — L1l < 5 and | (an +bp) — La| < 3

By the triangle inequality,
|bn — (Lo — L)| = lan + by —an — (Lo — Ly)| = |(—an + L1) + (an + by — Lp)|
<I|Lj —an| + lan +bn — L3|.

Thus, forn > M,

€ €
bp—(Ly—L -+ - =¢;
|bn — (L2 1)|<2—f—2 €

that is, {b, } converges to L, — L1, in contradiction to the given data. Thus, {a, + b, } must diverge.
79. Theorem 1 states that if lim f(x) = L, then the sequence a, = f(n) converges and lim a, = L. Show that the
X—>00 n—oQ

converse is false. In other words, find a function f(x) such that a, = f(n) converges but lim f(x) does not exist.
X—> 00

SOLUTION Let f(x) = sinmx and a, = sinzn. Then a, = f (n). Since sin wx is oscillating between —1 and 1 the
limit li)moo f(x) does not exist. However, the sequence {a; } is the constant sequence in which a; = sinzwn = 0 for all n,
X

hence it converges to zero.
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81. Let by = a;,1. Use the limit definition to prove that if {a,} converges, then {b,} also converges and 1_i>m<>Q an =
n
lim by,.
n—oo

SOLUTION Suppose {a,} converges to L. Let b, = a, 1, and let € > 0. Because {a,} converges to L, there exists an
M’ such that |a, — L| < € forn > M’. Now, let M = M’ — 1. Then, whenevern > M, n+ 1> M + 1 = M’. Thus,
forn > M,

|bn — L| = |ap41 — L| < e.

Hence, {b,,} converges to L.

83. Proceed as in Example 12 to show that the sequence V3, vV 34/3, \ 3y 3+/3,...1s increasing and bounded above by

M = 3. Then prove that the limit exists and find its value.

sOLUTION This sequence is defined recursively by the formula:

an+1 =+ 3an, a = V3.

Consider the following inequalities:

3V3>3=a; = ay>ay;

ar = +/3a1 =
a3z = /3ap > /3a;1 = ay = a3 > ay;
aq = «/3a3 > /3ar = a3 = a4 > as.

In general, if we assume that ag > a;_1, then

agy1 = /3ag > /3ax_1 = ai.

Hence, by mathematical induction, a, 1 > a, for all n; that is, the sequence {ay} is increasing.
Because a;, 11 = «/3ap, it follows that a,;, > O for all n. Now, a; = V3 < 3.1f g < 3, then

ak4+1 = +/3ar <~3-3=3.

Thus, by mathematical induction, a, < 3 for all n.
Since {ay } is increasing and bounded, it follows by the Theorem on Bounded Monotonic Sequences that this sequence
is converging. Denote the limit by L = lim;,— ~ a,,. Using Exercise 81, it follows that

L= nll>mooa”+l = nli)moo,/3an = 3nll)mooan = +/3L.

Thus, L? = 3L,so L = 0 or L = 3. Because the sequence is increasing, we have a, > a| = /3 for all n. Hence, the
limit also satisfies L > /3. We conclude that the appropriate solution is L = 3; that is, limoo an = 3.
n—

Further Insights and Challenges
85. Show that nl_i)moo V/n! = occ. Hint: Verify that n! > (n/ 2)n/2 by observing that half of the factors of n! are greater

than or equal to n/2.

SOLUTION We show that n! > (%)"/ 2 Forn > 4 even, we have:
e h ()= ()
nl=1-.... —_ | = P 7} — ceeeen.
2 \2 —\2
———
5 factors 5 factors 5 factors

Since each one of the % factors is greater than % we have:

n n n n\n/2
nVZ<7+1) ..... n277=(7) )
2 2 2 2
—_————— ~——
5 factors 5 factors
For n > 3 odd, we have:
n—1 n+1 n+1
nl=1..... . e > — e n.
2 2 2

% factors ”T“ factors % factors
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Since each one of the "'H factors is greater than 2 5, we have:
n+1 n n n\ (n+1)/2 n/2 n\n/2
n!Z >7....7:(7> :() 2(7) .
2 2 2 2 2 2
—_— —— ———
% factors ”“ factors

In either case we have n! > (%)"/2. Thus,

nl > /E.
- V2
n

Since nll)m 5 = 00, it follows that hm ¥/n! = co. Thus, the sequence a,, = +/n! diverges.

87. Given positive numbers a| < by, define two sequences recursively by

an, +b
apy1 =+ anbn, byy1 = - 5 &

(a) Show that a,, < b, for all n (Figure 13).

(b) Show that {a;} is increasing and {b;,} is decreasing.
by —ay

(c) Show that b, 11 —a,4+1 <

(d) Prove that both {a;} and {b,} converge and have the same limit. This limit, denoted AGM(ay, by), is called the
arithmetic-geometric mean of a| and b;.
(e) Estimate AGM(1, ﬁ) to three decimal places.

Geometric  Arithmetic

mean mean
+ t
+ + + + — x
ay Apyr t bn+1 by,
AGM(a,, b))
FIGURE 13

SOLUTION
(a) Examine the following:

an+b,, Gt b= 2y (Van)? = 2/an/bn + (v/Bu)*

b — = =
n+1 — dn+1 = an ) 2

(JaTz )’
2

We conclude that b, 1 > a, 41 foralln > 1. By the given information b; > ay; hence, b, > a; for all n.
(b) By part (a), b, > a, for all n, so

> 0.

Ap1 = anby = Jay -ay = an =dan

for all n. Hence, the sequence {a,} is increasing. Moreover, since a, < b, for all n,

an +b by + b 2b
bn+1=n2n§nzn=Tn=bn

for all n; that is, the sequence {b,} is decreasing.
(c) Since {ay} is increasing, a,41 > ay. Thus,

an + by an + by, — 2ay by, —ap
byy1 —apy1 <byp1 —an = —an = = .

2 2 2
Now, by part (a), ay < by, for all n. By part (b), {b,,} is decreasing. Hence b, < b for all n. Combining the two inequalities
we conclude that a;, < b for all n. That is, the sequence {a,} is increasing and bounded (0 < a;, < b;). By the Theorem
on Bounded Monotonic Sequences we conclude that {a,} converges. Similarly, since {a,} is increasing, a, > a; for all
n. We combine this inequality with b, > a, to conclude that b, > a; for all n. Thus, {b,} is decreasing and bounded
(a1 < by < by); hence this sequence converges.
To show that {a, } and {b, } converge to the same limit, note that

by_1—a,_ by_o —a,_ by —a
by —an < n—1 n lS n—2 n 25"'5 1 1
2 22 on—1

Thus,

nlgnoo(b” —an) = (b1 — a])nl—i>moo on—1""
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(d) We have

an +b
apy1 =+anbp, ay =1, by = % by =2

Computing the values of a;, and b, until the first three decimal digits are equal in successive terms, we obtain:

ar = Jarby =4/1-+/2=1.1892

by 1442
bzzal;r L _ +2f=1.2071

a3 = Jazby = /1.1892 - 1.2071 = 1.1981
ay+by  1.1892-1.2071

by = = 1.1981
2 2
ag =+/azbz = 1.1981
b
by = L; 3 = 1.1981

Thus,

AGM(I,ﬁ) ~ 1.198.

89. & Let a, = H, — Inn, where H,, is the nth harmonic number

H—l+1+1—|— +1
" 23 n

n+1 dx
(a) Show that a, > O for n > 1. Hint: Show that H, > / —.

1 X
(b) Show that {a;} is decreasing by interpreting a, — a,1 as an area.
(¢) Prove that lim ay exists.
n—oo

This limit, denoted y, is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and
number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether y is an
irrational number. The first 10 digits are y = 0.5772156649.

SOLUTION

frH-l dx

(a) Since the function y = )lc is decreasing, the left endpoint approximation to the integral f;" " <=

integral; that is,

is greater than this

1 1 1 ntl gy
1l l4=--14=--14--4+—-1> —
2 3 n 1 X

or

n+l1 dx
H, z/ &
1

X

Moreover, since the function y = % is positive for x > 0, we have:

n+1 dx n dx
/ x Z / X
1 X 1 X
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Thus,

mdx n
HnE/ — = Inx| =lnn—Inl=1Inn,
1 X 1

and
ap=H, —Inn>0 foralln > 1.
(b) To show that {a;} is decreasing, we consider the difference a; — a,1:

an —apy1 = Hy —Inn — (Hyyy —In(n+ 1)) = Hy — Hyp +In(n +1) —Inn

1 1 1 1 1
=l+-+-+-—=|l+z+-+-+—— |+ + 1) —Inn
2 n 2 n n+l1

1
= e +In(n + 1) — Inn.

Now, In(n + 1) —Inn = f"+1 dx ' \hereas nlﬁ is the right endpoint approximation to the integral fn"H ‘i—x Recalling

ntl gy 1
- >
,/,., x " n+1l

n X
y = % is decreasing, it follows that

o)
ap — ap+1 = 0.

(c) By parts (a) and (b), {a,} is decreasing and O is a lower bound for this sequence. Hence 0 < a, < a; for all n. A
monotonic and bounded sequence is convergent, so lim;,— oo @, €xists.

10.2 Summing an Infinite Series

Preliminary Questions

1. What role do partial sums play in defining the sum of an infinite series?

SOLUTION The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence
does not exist, the series is said to diverge.

2. What is the sum of the following infinite series?

T
478716 32 64

SOLUTION This is a geometric series with ¢ = % andr = % The sum of the series is therefore

1 1

i _az_1
1~ 1

-3 3 2

3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?

1+3+32 435 434 4.
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SOLUTION This is a geometric series with ¢ = 1 and r = 3. Applying the formula for the sum of a geometric series
then gives

o0
D
n=0 -

Clearly, this is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid in this case
because a geometric series with r = 3 diverges.

oo

. 1 1 . . .
4. Arvind asserts that Z - = 0 because - tends to zero. Is this valid reasoning?
n

n=1
SOLUTION Arvind’s reasoning is not valid. Though the terms in the series do tend to zero, the general term in the
sequence of partial sums,

1
+ot =,

1
Sn=1+*+ P
n

232
is clearly larger than 1. The sum of the series therefore cannot be zero.

o0
1
5. Colleen claims that Z —— converges because
n=1 "
li

n—oo

=0

Sl-

Is this valid reasoning?

SoLUTION Colleen’s reasoning is not valid. Although the general term of a convergent series must tend to zero, a series
o0

whose general term tends to zero need not converge. In the case of Z 7, the series diverges even though its general
n

n=
term tends to zero.

oo
6. Find an N such that Sy > 25 for the series Z 2.

n=1

SOLUTION The N'th partial sum of the series is:

N
———
n=1 N
o
7. Does there exist an N such that Sy > 25 for the series Z 279 Explain.
n=1

oo
. —n. e . 1 -
SOLUTION The series E 27" is a convergent geometric series with the common ratio r = 5 The sum of the series is:

n=1

=

S = =1.

1—

| —

Notice that the sequence of partial sums {Sy} is increasing and converges to 1; therefore S)y < 1 for all N. Thus, there
does not exist an N such that Sy > 25.

8. Give an example of a divergent infinite series whose general term tends to zero.
— 1 1
SOLUTION Consider the series Z—g. The general term tends to zero, since lim ——
= —
— 10 n oo n
sum satisfies the following inequality:

= 0. However, the N'th partial

Sle

N
N1

Sle
e

1 1 1 1—
SN:79+79+"'+7 =N =N

110 210 N1

=

|
|

S
S

of =

N—oo

<l

o
1 1
Thatis, Sy > N 10 forall N. Since lim N 10 = oo, the sequence of partial sums S, diverges; hence, the series Z
n=1n1!
diverges.
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Exercises

1. Find a formula for the general term a;, (not the partial sum) of the infinite series.

(a)1+l+i+i+-~- (b)1+§+§+g+---
39 27 8l 1 2 4 8
122 33 44

© -3t 3 21 1321

(d) 2 + ! + 2 + ! +---

1241 2241 3241 4241

SOLUTION

(a) The denominators of the terms are powers of 3, starting with the first power. Hence, the general term is:

1

dan

(b) The numerators are powers of 5, and the denominators are the same powers of 2. The first term is a; = 1 so,

5 n—1

n

li’l
ap = (-t —.
n!

(¢) The general term of this series is,

(d) Notice that the numerators of a, equal 2 for odd values of n and 1 for even values of n. Thus,

2
3 odd n
o = nc+1
" 1
even n
n2+1
The formula can also be rewritten as follows:
n+1
1+<71)'2++1
an =
" n?+1
In Exercises 3—6, compute the partial sums S», S4, and Se.
! 1 1 1
3. +272+¥+472+“_
SOLUTION
SH=1+ L _>3,
2 = 22—4,
S—1+1—|—1+1—205'
TR TR T 2T
S_1+1+1+1+1+1_5369
6= 22 32 42 52 62 ~ 3600°
5 ! + ! + ! +
1.2 2.3 3.4
SOLUTION
s 1 N 1 _1+1_4_
27127237276 6 3
s S +as 4+ 2+ 1 N 1 2 1 1 4
= a aqg = — _— —_— - —_— - = =,
AT T M EI T T s T3 T 220 5
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7. The series § = 1 + (%) + (%)2 + (%)3 + ... converges to % Calculate Sy for N = 1,2, ... until you find an Sy

that approximates % with an error less than 0.0001.

SOLUTION
S1=1
1 6
S =l4+-—=-2=12
2=1+5753
Sy=1+s+ = ok =124
3T TS T s T s T
1 1 156
Si=ldod — 4 — = 1248
3=t 55125 = 125
111 1 781
Su=1d -4 — 4 — 4 —— = —— = 1249
4= St s T s T e T e
111 1 1 3906
L I S T U S LAt I YN
=TSt 55 s Teas T 3125~ 318 o
Note that

1.25 — §5 = 1.25 — 1.24992 = 0.00008 < 0.0001

In Exercises 9 and 10, use a computer algebra system to compute S1g, S100, S500, and Siooo for the series. Do these
values suggest convergence to the given value?

9. LHS

SOLUTION Write

(_1)n+1
anp =
2n-2n+1)-2n+2)
Then
N
SN = Zan
i=1
Computing, we find
T -3

~ (0.0353981635

S10 ~ 0.03535167962
S100 ~ 0.03539810274
Ss00 A 0.03539816290

S1000 ~ 0.03539816334

It appears that Sy — ”7’3.

11. Calculate S3, S4, and S5 and then find the sum of the telescoping series
oo

1 1
S= _— -
Z(n—i—l n+2>

n=1

SOLUTION
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The general term in the sequence of partial sums is
Sy = 1 1 N 1 1 N 1 1 P 1 1 1 1
N=\2"3 34 475 N+1 N+2) 2 N+2

1 1
S= lim Sy= lim (=———) =~
Noso N T Nl—r>noo<2 N+2> 2

thus,

The sum of the telescoping series is therefore 1 5-

o
13. Calculate S3, S4, and S5 and then find the sum § = Z

usmg the identity

2n+1>

1]
an2 -1 2

SOLUTION

The general term in the sequence of partial sums is
S — 1/1 1 n 1/1 1 n 1/1 1 P 1 1 1 1 ] 1 )
N=a\173)72375) 72577 2\2v—1 2N +1) " 2 AN +1)°

1 1 1
pm Sy = Nl—r>nc>02< 2N+1> 2

thus,

1 1 1
. Find th f—+ — + —
in equm013+35+5.7+
SOLUTION We may write this sum as

2 2n — l)(2n+ D

n=1

n—1 2n+1 ’

n=l

The general term in the sequence of partial sums is

S_111+111+111++11 1_11 I\
N=2\173 2\3 5 2\5 17 2\2N -1 2N+1) 7 2 2N+1)°

thus,

and

o
2:: 2n—1)(2n+1) ~ 2

In Exercises 17-22, use Theorem 3 to prove that the following series diverge.

o0

n
17. _—
Z 10n + 12
n=1
n
SO ON Th 1 term, ———, has limit
LUTION e general term o r 12 as limi
. n . 1
lim — = lim ——— = —
n—oo 10n + 12 n—o0 10+ (12/n) 10

Since the general term does not tend to zero, the series diverges.

649
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o 1 2 3
19. - ——+-——+4--.
1 2 + 3 4 +
SOLUTION The general term a, = (— 1)”_1 "n;l does not tend to zero. In fact, because lim;, — o % = 1,limy 00 an

does not exist. By Theorem 3, we conclude that the given series diverges.

1 1 1
21. cos - +cos = +cos— + - -
> + 3 + 1 +
SOLUTION The general term a; = cos —L_ tends to 1, not zero. By Theorem 3, we conclude that the given series

. n+l
diverges.

In Exercises 23-36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.

1 1 1
23, -+ -+ 5+
] + 3 + 2 +
SOLUTION This is a geometric series with c = 1 and r = %, 80 its sum is
11 8
1 =7/ 7
1—g 7/8 7

00 3\~"
25. —

> (5)

n=3
SOLUTION Rewrite this series as
>(5)
n=3 3

. o 11 L

This is a geometric series with r = 3 > 1, so it is divergent.

o

4 n

27. —=

> ()

n=—4
. o 4 . .

SOLUTION This is a geometric series with ¢ = 1 and r = 5 starting at n = —4. Its sum is thus

cr—4 c 1 95 59,049

ST A _ 5 4 45T 9.ah 45
e R

o0
29. Z e "
n=1

SOLUTION Rewrite the series as

to recognize it as a geometric series with ¢ = é andr = é. Thus,

1
n=1 1— e
00
8 +2"
3L Z 5n
n=0

0 0
which is a sum of two geometric series. The first series has ¢ = 8 (%) =8andr = %; the second has ¢ = (%) =1

and r = % Thus,

w—

—_
|
wiro
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and
o
8+2" 5 35
S =1045=3
n=0
5 5 5
B.5——+—5—=5+---
st 42 43 *
SOLUTION This is a geometric series with ¢ = 5 and r = —3. Thus,

o0 n

1 5 5 5
25.(_1) - -2 =
n=0 1- 4

7 49 343 2401

35, - ——+ — — —
8 64 + 512 4096
SOLUTION This is a geometric series with ¢ = % and r = —%. Thus,
00 7 7
B -yd2
15 '
n=0 8 ( %) g 15

37. Which of the following are not geometric series?

@ Z - ® Y
n=3
© Z ;— @y a"
n=0

n=>5

SOLUTION

7\" 7
(a) Z 29n = Z <@> : this is a geometric series with common ratio r = 2

(b) The ratio between two successive terms is

1
4
An+1 (n-{-l)4 n* ( n )

an L+t \n+l
n

(0.¢]
This ratio is not constant since it depends on n. Hence, the series E — is not a geometric series.

n= 3
(¢) The ratio between two successive terms is
(n+1)?
Gyt _ et _ (DT 20 1Y
a2 p2 o+l T 2
2}1
o 2
This ratio is not constant since it depends on n. Hence, the series Z — is not a geometric series.
n=| 0
o0 o0 1 n 1
d) Znﬁl = Z <—> : this is a geometric series with common ratio r = —.
b4 Vg
n=5
o0 o0 o0

39. Prove that if Z ay converges and Z by diverges, then Z (an + by) diverges. Hint: If not, derive a contradiction

n=1 n=1 n=1
by writing

an—Z(an+bn)_Zan

n=1

651
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(e¢]

SOLUTION  Suppose to the contrary that )2 |

by the Linearity of Infinite Series, we have

[’} 00 00
an:Z(an+bn)_Zan

n=1 n=1 n=1

an converges, Y >° | by diverges, but )% | (ay + by) converges. Then

so that "0 | by, converges, a contradiction.

41. & Give a counterexample to show that each of the following statements is false.
o0
(a) If the general term a, tends to zero, then Z an, = 0.
n=1
(b) The N'th partial sum of the infinite series defined by {a; } is ay .
o
(¢) If a;, tends to zero, then Z ap converges.
n=1
o0

(d) If ay, tends to L, then Z a, = L.

n=1
SOLUTION

(@) Let a, = 27", Then lim,—, o a, = 0, but a, is a geometric series with ¢ = 20— {andr = 1/2, so its sum is

N |
1—(1/2)
(b) Leta; = 1. Then the nth partial sumis ay +ar +---+a, = n whilea, = 1.

1
(¢) Leta, = —. An example in the text shows that while a, tends to zero, the sum Zoo ap does not converge.
ﬁ n=1
(d) Leta, = 1. Then clearly a, tends to L = 1, while the series 2211 ay obviously diverges.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

FIGURE 4

SOLUTION The area of a triangle with base B and height H is A = %B H. Because all of the triangles in Figure 4 have
height %, the area of each triangle equals one-quarter of the base. Now, for n > 0, the nth triangle has a base which
extends from x = 2,,% tox = % Thus,

1 1 1 1 1

B=27—2n+]zﬁ and A:ZB:W

The total area of the triangles is then given by the geometric series
3 T s\2) L4
n=

n=0

45. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of %).

FIGURE 5
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SOLUTION Because the angle at the lower left in Figure 5 has measure % and each zag in the path occurs at an angle of

%, every triangle in the figure is an isosceles right triangle. Accordingly, the length of each new segment in the path is

L times the length of the previous segment. Since the first segment has length 1, the total length of the path is

V2

1 \" 1 V2
Yl—=) =—F=——=2+V2.
n=0<ﬁ> -5 V21

47. Show that if a is a positive integer, then

i 1 1+ ! +-t 1
n(n+a) a 2 a
n=1
SOLUTION By partial fraction decomposition
1 A B

- 4 :
n(n+a) n n4a

clearing the denominators gives
1=A(m+a)+ Bn.

Setting n = 0 then yields A = 1, while setting n = —a yields B = — 1. Thus,

R T
nin+a) n n4+a a\n n+a)’

and

SHREE 1

n(n+a) a\n n+a)’
n=1 n=1

For N > a, the Nth partial sum is

S—l 1+1+1+ +1
N_a 2 3 a

1/ 1 1 1 1
E<N+1+N+2+N+3+’”+N+a)'
Thus,

i*— lim § —l l+l—|—1+ -i—l
n_ln(n—i—a)_ N= 4 2 3 al’

49. Let {b,} be a sequence and let a, = b;, — b,,_1. Show that Z ap converges if and only if nl_i)moo by, exists.

n=1
00

SOLUTION Leta, = b, — b,,_1. The general term in the sequence of partial sums for the series Z ap is then

n=1
SN = (b1 = bo) + (by = b1) + (b3 = b2) +--- + (bny —by—_1) = by — bo.
o o
Now, if lim by exists, then so does lim Sy and Z ap converges. On the other hand, if Z ay converges, then
N—o0 N—o00 ot ot

o0

lim Sy exists, which implies that lim by also exists. Thus, E ap converges if and only if lim b, exists.
N—o00 N—o00 1 n—00
n=

Further Insights and Challenges

Exercises 51-53 use the formula

N

1—
Thr V=

51. Professor George Andrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative
of f(x) = xN (for N > 0). Assume that a # 0 and let x = ra. Show that

N N N
oxY —a 1 orYv =1
@) = lim ——— = a1 lim

x—>a x—a r—>1 r—1

and evaluate the limit.
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SOLUTION According to the definition of derivative of f(x) atx =a

N _ N
(@) = lim =%

X—>a x —a

Now, let x = ra. Then x — a if and only if » — 1, and

. X —a .
f (@) = lim —— = lim ———
x—>a x—a r—1 ra—a r—1 a(r—1) r—1r—1

N N
N N (ra)N _ LIN a (r — 1) Ne11 }’N -1
m —* =aqa lim ——.

By Eq. (7) for a geometric sum,

1—rN N _
R =1+r+r2_|_...+rN*1,
1—r r—1
SO
N
= lim <1+r+r2+---+rN*1):1+1+12+...+1N71:N.
r—1r— r—1

Therefore, f (a) = aV"l. N =NaV!
53. Verify the Gregory—Leibniz formula as follows.
(a) Setr = —x2in Eq. (7) and rearrange to show that

1

(—1)N x2N
14 x2

a2t o (NN 2
14 x2
(b) Show, by integrating over [0, 1], that

1 1 1 (—HN-1 N/1x2Ndx
T NP T A —1
4 3+5 7“L +2N—1+( ) 0o 14+x2

(c) Use the Comparison Theorem for integrals to prove that
/' U x2N gx 1
0< - <
“Jo 14x% T2N+1
Hint: Observe that the integrand is < X2V
(d) Prove that

T ] 1 n 1 1 n 1
4 35 7 9
Hint: Use (b) and (c) to show that the partial sums Sy of satisfy }SN - %| < ﬁ, and thereby conclude that
lim Sy =Z.
N—o0 N 4
SOLUTION

(a) Start with Eq. (7), and substitute —x2 for r:

2 o1 1=rV
1+r—|—r —|—+r =
1—r
2N
1_x2_|_x4+...+(_1)N*1x2N*2:ﬂ
1= (=)
B B 1 (—1)N)C2N
o2 oxd (N1, 2N-2 _ _
=D 1 +x2 1+ x2

1

(—1)N.X2N
1+x2

=122t DNV
14 x2
(b) The integrals of both sides must be equal. Now,
1 1 1
/ —dx = tan x| =tan"'1—tan"l0= T
0 1+x 0 4

while

1 (—1)N.X2N
/ =2 x4 DNV 2 L 2 © ) iy
0 1+ x2
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1 1 1 U x2N dx
=(x—c+ o+ (VT 2N +(—1)N/
2N —1 0

3 5 1+ x2
11 vop | N/Iszdx
=1l -4 (—1 -1 g
sttt + (=1 2N—l+( ) T2
(c) Notethatforxe[O,l],wehavel—l—xzzl,sothat
2N
0<— <x2N
1+x2
By the Comparison Theorem for integrals, we then see that
1,2N 1 1
OS/ x de/ szdx:;x2N+] :;
o 14+x2 0 2N +1 0o 2N+1
(d) Write
1
= (=" , 1
Aan (=D m—1 n=

and let Sy be the partial sums. Then

1 2N
b4 x“N dx
S ——’: —IN/

’N 1 ’( ) A 3

Thus limy_, o0 Sy = % so that

1

b4 1 1 1+
5 79

Z

I
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55. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal”
curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an
equilateral triangle (stage 0) and produce stage 1 by replacing each edge with four edges of one-third the length, arranged
as in Figure 8. Continue the process: At the nth stage, replace each edge with four edges of one-third the length.

(a) Show that the perimeter P, of the polygon at the nth stage satisfies P, = 4P,,_l. Prove that lim P, = oc. The
3 n—oo

snowflake has infinite length.

(b) Let A be the area of the original equilateral triangle. Show that (3)4"~! new triangles are added at the nth stage,
each with area Ap/9" (for n > 1). Show that the total area of the Koch snowflake is %Ao.

ARHEN Y

Stage 1 Stage 2 Stage 3
FIGURE 8

SOLUTION

(a) Each edge of the polygon at the (n — 1)st stage is replaced by four edges of one-third the length; hence the perimeter
of the polygon at the nth stage is % times the perimeter of the polygon at the (n — 1)th stage. That is, P, = % —1- Thus,

Pi=2p; Pr=ip = 42P Py=2py =
1—30, 2—31— 3 (B 3—32—

and, in general, P, = (%)nPO. As n — o0, it follows that

4 n
lim P, = Py lim (7> = 00.
n—oo n—oo \ 3

4 3
— P’
(3) 0

(b) When each edge is replaced by four edges of one-third the length, one new triangle is created. At the (n — 1)st stage,
there are 3 - 4"~ edges in the snowflake, so 3 - 4" 1 pew triangles are generated at the nth stage. Because the area of an
equilateral triangle is proportional to the square of its side length and the side length for each new triangle is one-third
the side length of triangles from the previous stage, it follows that the area of the triangles added at each stage is reduced
by a factor of % from the area of the triangles added at the previous stage. Thus, each triangle added at the nth stage has

an area of Ay/9". This means that the nth stage contributes

Ao 3. [4\"
‘4n—1_7=7A *
3 on 4 °(9>
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to the area of the snowflake. The total area is therefore
4

A=A +3Ai ' 4 PRI SR A S
= A0 4011_19 = A0 401_3—0 405—50-

10.3 Convergence of Series with Positive Terms

Preliminary Questions

o
1. Let S = Z ap. If the partial sums Sy are increasing, then (choose the correct conclusion):
n=1
(a) {an} is an increasing sequence.
(b) {an}is apositive sequence.
SOLUTION The correct response is (b). Recall that Sy = a1 +ap +a3 +--- +ay; thus, Sy — Sy—_1 = an. If Sy is
increasing, then Sy — Sy_1 > 0. It then follows that ay > 0; that is, {a;} is a positive sequence.

2. What are the hypotheses of the Integral Test?

SOLUTION The hypotheses for the Integral Test are: A function f(x) such that a, = f(n) must be positive, decreasing,
and continuous for x > 1.
oo

3. Which test would you use to determine whether Z n=32 converges?

n=1

SOLUTION Because n 32 = n%, we see that the indicated series is a p-series with p = 3.2 > 1. Therefore, the series
converges.
o0
. . 1
4. Which test would you use to determine whether E T
2+ /n
converges? n=1

SOLUTION Because

1 1 \"
S
M+ /n 20 2
and
o 1 n
> (3)
n=1
is a convergent geometric series, the comparison test would be an appropriate choice to establish that the given series
converges.

[ o 4
5. Ralph hopes to investigate the convergence of E ¢ by comparing it with E —. Is Ralph on the right track?
n n

SOLUTION No, Ralph is not on the right track. Forn > 1,

o
. . . . .
however, Z — is a divergent series. The Comparison Test therefore does not allow us to draw a conclusion about the
n
n=1

e—n

oo
convergence or divergence of the series E .
n

n=1

Exercises

In Exercises 1-14, use the Integral Test to determine whether the infinite series is convergent.

> 1
1 an
n=1

SOLUTION Let f(x) = v This function is continuous, positive and decreasing on the interval x > 1, so the Integral
X

Test applies. Moreover,
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00 ¢ R 1 1 1

/ %: lim xddx=—= lim [— —1)=-.

1 X R—o0 Jq 3 R—>oo \ R3 3
[o,0]

The integral converges; hence, the series E = also converges.
n

n=1
00
33 a3
n=1

1 1 . .o . - . .
SOLUTION Let f(x)=x"3 = 7 This function is continuous, positive and decreasing on the interval x > 1, so the
Jx

Integral Test applies. Moreover,

00 R
/ 13 dx = lim x 3 ax = é lim <R2/3 — 1) = 00.
1

R—o00 J1 R—o0

0

The integral diverges; hence, the series Z n~1/3 also diverges.
n=1
o 2
n
S
3 5/2
neas 19
2
SOLUTION Let f(x) = ( 3 ) 572 This function is positive and continuous for x > 25. Moreover, because
x> +9
5/2 3/2
e 23 4+97 —22. 363 +9Y7 32 136 - 114?)
X) = = .
3 +9)° 23 +9)"/?

we see that f'(x) < 0 for x > 25, so f is decreasing on the interval x > 25. The Integral Test therefore applies. To
evaluate the improper integral, we use the substitution u = x> +9, du = 3x%dx. We then find

IS ) . R ) 1 R¥49 4,
———dx = lim ———dx = - lim
25 (x3 +9)5/2 R—00 o5 (x3 +9)3/2 3 R—»o0J15634 ud/?

2 1 1 2
=—— lim - = .
9 R>o00 ((R3 +9)3/2 156343/2> 9.156343/2

o 2
The integral converges; hence, the series Z also converges.
3 1952
n=25 (n + )
Sl |
7.
Z l’l2 + 1
n=1
SOLUTION Let f(x) = 27_{_1 This function is positive, decreasing and continuous on the interval x > 1, hence the
X
Integral Test applies. Moreover,
© dx . R dx . -1 b1 T mw n
= lim = lim (tan R_*):f——:—.
1 x2 41 R—o0 Jq x2 41 R—0o0 4 2 4 4
o
The integral converges; hence, the series Z also converges.
n?+1
n=1
= 1
9. _—
Z nin+1)
n=1
SOLUTION Let f(x) = ———. This function is positive, continuous and decreasing on the interval x > 1, so the

x(x+1)
Integral Test applies. We compute the improper integral using partial fractions:

o dx . R 1 1 . x
——— = lim - = dx = lim In
1 x(x+1) R-ooJp x x+1 R—oo x+1

oo
The integral converges; hence, the series Z
n=1

R

. R 1 1
= lim (In —In-)=Inl—In- =1In2.
1 R—o0 R+1 2 2

1

———— converges.
nn+1)
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<1
ny ——
2
b n(lnn)
SOLUTION Let f(x) = a )2 . This function is positive and continuous for x > 2. Moreover,
x(Inx
1
/ 2 2
)= (1 S(nx)2 4+ x-2(nx) - 7> - ((lnx) —|—21nx) .
f x2(Inx)* x x2(Inx)*

Sincelnx > Oforx > 1, f/(x)is negative for x > 1;hence, f is decreasing for x > 2. To compute the improper integral,

we make the substitution u = In x, du = — dx. We obtain:
X

00 R 1 InR du
/ ———dx = lim ———dx = lim —
> x(Inx)? R>o0Jy x(Inx)? R0 Jin2  u?

1 1
—lim (— - — | =—.
R— 00 <lnR ln2> In2
(0.¢]

The integral converges; hence, the series also converges.

2
o (Inn)

1
13. Z olnn
n=1
SOLUTION Note that
2lnn — (eln2)lnn — (elnn)an — nln2'

Thus,

oo oo

1 1
> gmr = 2w

n=1 n=1

1
Now, let f(x) = T3 This function is positive, continuous and decreasing on the interval x > 1; therefore, the Integral
X

Test applies. Moreover,

® dx R ax 1 -1
=2~ lim =—— lim R"™™2_ 1) = o,
,/1 xIn2 R—>oo,/1 xIn2 1—In2 R—>oo( )
o
because 1 — In2 > 0. The integral diverges; hence, the series Z S also diverges.
n=1
o0 1 o
15. Show that Z B ren converges by using the Comparison Test with Z n=3.
n=1

n=1

o
SOLUTION We compare the series with the p-series Z n=3 Forn >1,
n=1
1 1
J— S —_
n3 + 8n n3
o0 o0

Since Z — converges (itis a p-series with p = 3 > 1), the series Z ——— also converges by the Comparison Test.
n3 1 n3 4+ 8n

n=1

o0
1
17. Let S = Z T«f Verify that forn > 1,
n n

n=1
1 1 1 1
_ < -, < —
n+.n " n n+n " Jn
1 1
Can either inequality be used to show that S diverges? Show that n > n and conclude that S diverges.
n n n

SOLUTION Forn > 1,n + +/n > n and n + 4/n > /n. Taking the reciprocal of each of these inequalities yields

1
n-+

1
n+./n

and

=<

=<

S|~
_
Bl

B
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(0.¢]
These inequalities indicate that the series Z

n=1

1 1 1
is smaller than both Z — and Z —— however, Z — and
n — Jn n

1
n+./n =

n=1
1
Z 7 both diverge so neither inequality allows us to show that S diverges.
n
n=1

On the other hand, forn > 1,n > /n, s02n > n + /n and
1 1

o0 o
The series Z e 2 Z — diverges, since the harmonic series diverges. The Comparison Test then lets us conclude
n n
n=1 n=1
o0
that the larger series Z L also diverges
n+./n '
n=1
In Exercises 19-30, use the Comparison Test to determine whether the infinite series is convergent.
oo
1
19. —

n2n
n=1

o0 n
1
SOLUTION We compare with the geometric series E (5) .Forn > 1,
n=1

1 1 1\"
—_— < — = = .
n2t T 21 2
oo

oo
\" 1
Since ; <E) converges (it is a geometric series with 7 = %), we conclude by the Comparison Test that Z o also

n= n=l1
converges.
— 1
21. —_—
Z nl/3 +on
n=1
SOLUTION Forn > 1,
1 _ 1
nl/3 4 on — 2n
oo
The series Y52 L is a geometric series with » = 1 so it converges. By the Comparison test, so does Z _
n=17n 848 2 e b ’ — nl/3 2
oo
4
23 Z m! + 4m

m=1
SOLUTION Form > 1,

4 4 1\ !
—_— < — = - .
m!+4m — 4m 4
1\ ! 1
The series E (Z) is a geometric series with r = 7 so it converges. By the Comparison Test we can therefore
m=1

o
also converges.
=1

conclude that the series Z
m

m! 4 4"

k=

sinZ k 1
0< < —.
T k2 T k2
o
The series Z ) is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that
k=1

o .2
the series Z sin”k also converges
2 ges.

k=1

k
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2
7Y i

n=1

SOLUTION Since 37" > 0 for all n,
2 2 1\"
T <2 af2).
3n 43— 7 3n 3

n
1
The series Z 2( g) is a geometric series with r = 3 so it converges. By the Comparison Theorem we can therefore

conclude that the series Z also converges.

n=1

337

]

1
29. —_—
r; (n+1)!

SOLUTION Note that forn > 2,
m+1=1-2.3...n-(n+1) <2"
N——e’
n factors

so that

o0 o0

Sy iy
n+D (n+D!— n
n=1 n=2 n=2

o]

1
But) >0, — o is a geometric series with ratio r = 5750 it converges. By the comparison test, Z converges as

(n+ 1!
well.
Exercise 31-36: Forall a > 0 and b > 1, the inequalities

Inn < n?, n% < b"

are true for n sufficiently large (this can be proved using L’Hopital’s Rule). Use this, together with the Comparison
Theorem, to determine whether the series converges or diverges.

X Inn

31. —
>3
n=1

SOLUTION For n sufficiently large (say n = k, although in this case n = 1 suffices), we have Inn < n, so that

X Inn n &1
275 73272

||M8

This is a p-series with p = 2 > 1, so it converges. Thus Z?zik Inn 4150 converges; adding back in the finite number of

terms for 1 < n < k does not affect this result.
1 100
33, Z ( nn)

SOLUTION Choose N so that Inn < n%-0005 for 5 > N. Then also forn > N, (In n)100 < (nO'OOOS)mO = n005_ Then

(lnn as 1
Z X/:v ,1.05
n=

)100 x  ,,0.05

Lo

n=N
1
But E 05 is a p-series with p = 1.05 > 1, so is convergent. It follows that Z;;O: (ln ") 9 s also convergent;
nl
: . , (1n n>1°°
adding back in the finite number of terms forn = 1,2, ..., N — 1 shows that E ———— converges as well.

n=1
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The latter sum is a geometric series with r = % < 1, so it converges. Thus the series on the left converges as well. Adding
3 [ee)
back in the finite number of terms for n < N shows that Z 3% converges.
n=1
S . .
37. Show that Z sin — converges. Hint: Use sinx < x forx > 0.
n=1 n
SOLUTION Forn > 1,

therefore, sm > (O forn > 1. Moreover, forn > 1,

sin ! < !
n2 = n2’
o0
The series Z 3 is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

n 1

the series E sin — also converges.
n?

n=1

In Exercises 3948, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

00 nz

39. _
Z 4 —1
n=2

n n n 1 . ) . 1
SOLUTION Leta, = . For large n, ~ — = —, so we apply the Limit Comparison Test with b, = —.
n*—1 e n2
We find
2
n
4
. a ) i_ ) n
L= lim 2= lim =1 = Iim =1
n—oo b, n—00 % n—o0o p4 _ 1
n
o o
. . N . 1 .
The series Z —5 is a p-series with p = 2 > 1, so it converges; hence, Z - also converges. Because L exists, by the
n=1 n n=2
o 2
Limit Comparison Test we can conclude that the series Z R converges.
n=2 -

412\/ﬁ

n
SOLUTION Let a;, = ———. For large n,

Va3 +1

, so we apply the Limit Comparison test with

n _on 1
V341 W3 Jn

1
b, = —. We find
f
n
_an w1 . vn3
L= lim — = lim T = lim ——=1.
n—00 by, n—o0o ﬁ n—oo n3+l

oo o0
The series Z— is a p-series with p = 5 < 1, so it diverges; hence, ZL also diverges. Because L > 0, by the

n= 1ﬁ n= Zﬁ

]

Limit Comparison Test we can conclude that the series Z \/; diverges.
n’ +1
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53 3n+5

nn— 1D —2)
3n+5 3n+5 3n
SOLUTION Leta, = ———— . For large n, ~
nin—1)(n—2)

3
D=2 ~3 = per so we apply the Limit Comparison
Test with b, = —- We find

3n+5
. a
L= lim = =

n=1

lim 20FD0FD 3n3 + 5n?
n—o00 b, n—>00 Lz T n—oo n(n—|—1)(n+2)
n
oo oo
1 . .
The series Z — is a p-series with p = 2 > 1, so it converges; hence, the series Z — also converges. Because L
n=1 n=3
3n+5
exists, by the Limit Comparison Test we can conclude that the series Z ———————— converges.
nn—1{n—2)
> 1
45. —_—
2_: Jn+Inn
SOLUTION Let
1
ap = ——
" n+nn
For large n, «/n + Inn ~ /n, so apply the Comparison Test with b, = —. We find
n
1 1
L= fim 9 gim L N =
n—oo b, n—oo/n+Inn 1 n—o00 | 4 Inn
NG
The series Z 1s a p-series with p = = < 1, so it diverges. Because L exists, the Limit Comparison Test tells us the
the onglnal senes also diverges
47. Z ( — cos 7> Hint: Compare with Z n-
n=1
SOLUTION Leta; =1 — cos —, and apply the Limit Comparison Test with b, = —. We find
n
1—cosd 1—cosi —Lzsml 1 sin L
L= lim 2 = lim " — lim = gim % = Jim —2
n—oo b, n—>00 1 X—00 1 X—00 2 x—>00
2 32 3 x
Asx—>oo,u:%—>0,so
1 sin % 1 sin u 1
L=<l — lim
2 x—00 % T 240 u 2
oo
The series Z — is a p-series with p = 2 > 1, so it converges. Because L exists, by the Limit Comparison Test we can
n=1
(0.¢]
. 1
conclude that the series Z (1 — cos 7) also converges
n

In Exercises 49-78, determine convergence or divergence using any method covered so far.
o

1
4&Z;Ei5

SOLUTION  Apply the Limit Comparison Test with a,, =

n?’
1
—_ 2
7_
L= lim = lim =2 = j
n—oo b, n—oo L
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o0 oo
Since the p-series Z —5 converges, the series Z - also converges. Because L exists, by the Limit Comparison Test
n=1 n n=4n
o
we can conclude that the series Z 3 converges.
n2 —
n=4
oo
n
1.3 Y1
4n +9
n=1
SO ON Apply the Limit C ison Test with v db !
LUTION e Limit Comparison Test with ¢, = ——— an = —:
pply P S n N
o1 1
. a . . n
L= lim % = lim 2* — |im =-.
n—0o0 by, n—oo _1_ n—oo0 4pn +9 4
N

o0
The series Z T is a divergent p-series. Because L > 0, by the Limit Comparison Test we can conclude that the series
n
n=1

also diverges.
n+9

1M
B~

. . nz—n nn—1) n
SOLUTION First rewrite a;, = 3 = 7} =
n’+n n (n + 1) n*+1

and observe

n—1 _

n
< =
n4+1 n4 n3

o
. 1. . . .
for n > 1. The series E —3 is a convergent p-series, sO by the Comparison Test we can conclude that the series
n=1

2

n-—n
E 5 also converges.
n’+n

n=1

o
55. ) @4/57"
n=>5
SOLUTION

() -x()

which is a geometric series starting at n = 5 with ratior = I > 1. Thus the series diverges.

1
57. —_
Z n321nn
n=2

SOLUTION Forn > 3,Inn > 1, so n3/21nn > n3/? and

1 1
— < 575 -
n3/2lnn  n3/2
o o
The series Z— is a convergent p-series, so the series Z— also converges. By the Comparison Test we can
1372 1372
n=1 n=3
oo o

. 1
therefore conclude that the series Z A nn
n=

converges. Hence, the series ———=—— also converges.
ZInn g nz_: n3/21nn g

o0
59. ) al/k
k=1
SOLUTION

lim ar = lim 4"k =49=1%0;
k— 00 k— o0

(0.¢]
therefore, the series Z 417k diverges by the Divergence Test.
k=1
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o0

1
61. Z Tt

n=2

SOLUTION By the comment preceding Exercise 31, we can choose N so that forn > N, we have Inn < nl/g, so that
(lnn)4 < n1/2 Then

= 1 = 1
_— - -
Z 7 Z 1/2
Py (Inn) "
which is a divergent p-series. Thus the series on the left diverges as well, and adding back in the finite number of terms

oo
1
for n < N does not affect the result. Thus Z —— diverges.
= (In n)4

o 1
63. _
Z nlnn —n
n=1
SOLUTION Forn > 2, nlnn —n < nlnn; therefore,

1 1
- >
nlnn—n = nlnn

1
Now, let f(x) = e For x > 2, this function is continuous, positive and decreasing, so the Integral Test applies. Using
xInx

the substitution u = Inx, du = 1 dx, we find

* dx R ax InR gy
/ = lim / = lim — = lim (In(In R) — In(In2)) = oo.
2 R—o00J2 U  R—-oo

xInx xInx = R—ooJin2
o
The integral diverges; hence, the series Z also diverges. By the Comparison Test we can therefore conclude that
nlnn
n=2

o0
1
the series —— diverges.
22 nlnn —n &
n

>
65.};;”

SOLUTION Forn > 2, n" > 2"; therefore,

1 1 \"
—_ < — = = .
n't — 2" 2

o o
1\" "
The series E <§> is a convergent geometric series, so E (5> also converges. By the Comparison Test we can

n=1 n=2
o0 o

therefore conclude that the series E —. converges. Hence, the series E —. converges.
n n

n=2 n=1
00
1+ (D"
67. _

SOLUTION Let

14+ (D"
ap = ———
n
Then
0 n odd
an =
" ﬁ = % n = 2k even

Therefore, {a;} consists of Os in the odd places and the harmonic series in the even places, so Z?il ay, is just the sum of
the harmonic series, which diverges. Thus Z;’il ap diverges as well.
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= 1
69. sin —
> sin -
n=1
o . . 1 1
SOLUTION Apply the Limit Comparison Test with @, = sin — and b, = —:
n n

. % sinu
L= lim — = lim =1,
n— 00 % u—0 u

where u = % The harmonic series diverges. Because L > 0, by the Limit Comparison Test we can conclude that the
o0

series E sin — also diverges.
n

n=1

e, P

71.
4n

n=1

SOLUTION Forn >3,2n+1 < 2", s0

m+1 2 1\"
<—=\|z].
4n 4n 2

o0 oo
. " o 1" .
The series Z <§> is a convergent geometric series, so Z <§> also converges. By the Comparison Test we can
n=1 n=3
oo o
. 2n +1 . . 2n+1
therefore conclude that the series Z converges. Finally, the series E converges.
4n 4n
n=3 n=1

73 i Inn
) n?—3n
n=4

SOLUTION By the comment preceding Exercise 31, we can choose N > 4 so thatforn > N, Inn < nl/2 Then

S Inn S nl/? e 1
> 23 = > 23, > 372 _3n1/2
n=N n=N n=N
. 1 o .
To evaluate convergence of the latter series, let a, = ——5———5 and b, = ——5, and apply the Limit Comparison
w32 _3,1/2 0372
Test:
1 1
L=lm 2= 1lim —— = lim —— =0
n—oo b, n—>00p3/2 _3,1/2 n—oo ] — 31

Thus Y a, converges if ) _ b, does. But ) _ b, is a convergent p-series. Thus Y a, converges and, by the comparison
test, so does the original series. Adding back in the finite number of terms for n < N does not affect convergence.

S

75. —_
Z nl21nn
n=2

SOLUTION By the comment preceding Exercise 31, we can choose N > 2 so thatforn > N, Inn < nl/4 Then

oo o0

> 1
- - -
172 3/4
an " Inn an "
which is a divergent p-series. Thus the original series diverges as well - as usual, adding back in the finite number of
terms for n < N does not affect convergence.

e¢]

4n? + 15n
77. -
ngl 3n% —5n2 — 17

SOLUTION  Apply the Limit Comparison Test with

4n% + 15n _dn? 4

= 3d sz 17
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‘We have

. ap 4n? + 15n 3n? ) 12n* + 4503 ) 12 +45/n
L=Ilm —=Ilim —— . —=Ilim ——— = lim =1
n—00b, n—003pt_502 17 4  n—oo 12p* —20n% — 68 n—>00 12 —20/n? — 68/n*

00 2
4n“ 4+ 15n
Now, Y% . b, is a p-series with p = 2 > 1, so converges. Since L = 1, we see that ——————— converges as
Zn_l n p p g r; 3n4 —5n2 — 17 g

well.

o

. 1
79. For which a does Z ——— converge?
n(lnn)¢
n=2
1

SOLUTION  First consider the case @ > O but a # 1. Let f(x) = ————. This function is continuous, positive and

x(Inx)

decreasing for x > 2, so the Integral Test applies. Now,

® dx . R ax . InR gy 1 . 1 1
= lim = lim — = lim — .
5> x(nx)? R>oofy x(Inx)? RoooJinz u? 1—aR>oco\(InR)¥*=! (In2)e-!
Because
. 1 oo, O<ax<l1
lim — =
R—oo (In R)4—! 0, a>1

we conclude the integral diverges when 0 < a < 1 and converges when a > 1. Therefore

o0
1 .
Z ——— converges for a > 1 and diverges for0 <a < 1.
n(lnn)
n=2
=1 1
Next, consider the case a = 1. The series becomes Z ——. Let f(x) = ——. For x > 2, this function is continuous,
o Inn xInx
n=

positive and decreasing, so the Integral Test applies. Using the substitution u = Inx, du = % dx, we find

© g R d InR d
/ Y — Iim / * — lim 2 — Jim (n(nR) — In(In 2)) = oo.
2 xlnx R-ocoJz xlnx RoocoJip2 u R—00

The integral diverges; hence, the series also diverges.
(In n)b

o0
Finally, consider the case a < 0. Let b = —a > 0 so the series becomes Z .Sincelnn > 1 forall n > 3, it
n=2
follows that

(nn)? 1

(In n)b > 1
n n

(In n)b

o0 o0
1
The series Z — diverges, so by the Comparison Test we can conclude that Z also diverges. Consequently,
n

n=3 n=3
00

(Inn
2=,

n=2

)b

diverges. Thus,

oo

1
2:2 A m? diverges for a < 0.
n=

To summarize:

o
1
Z converges if a > 1 and diverges ifa < 1.
= n(lnn)4

Approximating Infinite Sums In Exercises 81-83, let a,, = f(n), where f(x) is a continuous, decreasing function such
that f(x) > 0 and f loo f(x)dx converges.

81. Show that

[Trwar=Y aza+ [T e
1 nel 1
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SOLUTION From the proof of the Integral Test, we know that

N 00
a2+a3+a4+"'+aN§/ f(x)dxf/ f(x)dx;
1 1

that is,

SN—alffoof(x)dx or SN§a1+/OOf(x)dx.
1 1

Also from the proof of the Integral test, we know that

N
/ fx)dx <ay+ay+az+---+ay_1 =Sy —ay < Sy.
1

Thus,

N o)
/ f(X)dszN§a1+/ f(x)dx.
1 1

Taking the limit as N — oo yields Eq. (3), as desired.
o0
83. Let S = Z ap. Arguing as in Exercise 81, show that

n=1

M+1

M 00
Zan+/ f)dx <8< Zan / F0) dx 4]
n=1

Conclude that
M 00
0<S-— Zan+f fx)dx | <apti
M+1
n=1

This provides a method for approximating S with an error of at most aps 1.

SOLUTION Following the proof of the Integral Test and the argument in Exercise 81, but starting withn = M + 1 rather
than n = 1, we obtain

d n + dx.
/ fx)dx < Z an < apry fM+1f(x) x

M+l n=M+1

M
Adding Z ap, to each part of this inequality yields

n=1

M+1

Zan+/ (x)dx<2an_s<zan+f FG)dx.

M o0
Subtracting Z an + / f(x) dx from each part of this last inequality then gives us
M+1

n=1

0<5- Zan+/ f@dx | < ayr.

n=1

85. CAS Apply Eq. (4) with M = 40,000 to show that

o0
1
1.644934066 < Z — < 1644934068
n

Is this consistent with Euler’s result, according to which this infinite series has sum n? /6?

1 1
SOLUTION Using Eq. (4) with f(x) = —.an = and M = 40,000, we find
X n

o0
1 © dx
840,000 +/ <y — = 840,001 +A —-

40, OO] x2 =1 0,001 X

[e.e]
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Now,
840,000 = 1.6449090672;
1
S. =S ——— = 1.6449090678;
40,001 40,000 + 40,001
and
®© 4 R q 1 1 1
/ 2~ lim e dim (- —— )= = 0.0000249994.
40,001 2 Rooo 40,001 2 R—oo \ R 40,001 40,001
Thus,
1
1.6449090672 + 0.0000249994 < Z — = 1.6449090678 + 0.0000249994,
n=1 n
or
o0
1
1.6449340665 < Z — =< 1.6449340672.
n
n=1
7t2
Since — =~ 1.6449340668, our approximation is consistent with Euler’s result.

oo
87. £AS Using a CAS and Eq. (5), determine the value of Z n™> to within an error less than 1074,

n=1
soLUTION Using Eq. (5) with f(x) = x2 and an = n75, we have

o0
O§Zn_5— Zn_s—i—f x 2 dx S(M—i—l)_s.

n=1 n=1 M+l

To guarantee an error less than 10~4, we need (M + 1)~> < 10~%. This yields M > 10%5 — 1 ~ 5.3, so we choose
M = 6. Now,

;
> n> = 1.0368498887,
n=l1

and
00 R 1 1
f xVdx= lim [ xdx=—- lim (R_4 - 7—4) = — =0.0001041233.
7 R—o00 J7 R—o0 4.74
Thus,
0 00
Z n7 ~ Z n=> +/ x 7 dx = 10368498887 + 0.0001041233 = 1.0369540120.
n=1 n=1 7
oo
89. The following argument proves the divergence of the harmonic series S = Z 1/n without using the Integral Test.
n=1
Let
1 1 1 1 1
Sp=l+z+-+, SH=_+7+_-+

35 2 4 6

Show that if S converges, then

(a) S and S, also converge and S = S7 + S3.

(b) S > S and S, = 1.

Observe that (b) contradicts (a), and conclude that S diverges.

SOLUTION Assume throughout that S converges; we will derive a contradiction. Write

1 b — 1 1
an_n’ "Toam—1 Cn_2n
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for the n'™ terms in the series S, S1,and Sy. Since 2n — 1 > n forn > 1, we have b, < ay,. Since S = )_ a, converges,
1
so does S| = )_ b, by the Comparison Test. Also, ¢, = Ea"’ so again by the Comparison Test, the convergence of S

implies the convergence of S, = " ¢;. Now, define two sequences

b/ _ {b(n+1)/2 n odd
=
0 n even

Cc,, =

, 0 n odd
cpj2 neven

That is, b}, and c}, look like b, and ¢, but have zeros inserted in the “missing” places compared to a,. Then a, = b), + c};;
also S| =Y by, =Y b,and S, = > ¢y = Y c},. Finally, since S, S1, and S, all converge, we have

o0 o0 o0 o0 o0 o0
S=Zan=Z(b;l—l—c,’l):Zb;,—l—Zc;l:an—l—ch:Sl—FSg
n=1 n=1

n=1 n=1 n=1 n=1

1
Now, b, > ¢, for every n, so that S| > S,. Also, we showed above that ¢;, = Ea"’ so that 25, = S. Putting all this
together gives

S=8S1+59>59+5H=25%="S

so that § > §, a contradiction. Thus § must diverge.

Further Insights and Challenges
o
91. Kummer’s Acceleration Method Suppose we wish to approximate S = Z 1/ n?. There is a similar telescoping

n=1
series whose value can be computed exactly (Example 1 in Section 10.2):

e 1
2 i !

n=1

(a) Verify that

=1 (1 1
S = —_— —_—_——
Zn(n—i—l)_*_z<n2 n(n+1)>
n=1 n=1
Thus for M large,
g0
S~1+ s
Z n2(n+1) 6]
n=1
M
(b) Explain what has been gained. Why is Eq. (6) a better approximation to S than is Z 1 /nz?
n=1
(¢) £AS  Compute
1000 1 100 1
— 1+ Z -
2’ 2
n=1 n n=1 n=(n+1)
Which is a better approximation to S, whose exact value is 72 /6?
SOLUTION
= 1 = 1
a) Because the series — and ——— both converge,
@ ! ' an Zn(n-i—l) vere
n=1 n=1
o0 o o oo x o0
1 1 1 1 1 1 1
Zn(n+1)+z(n2 n(n+1)> Zn(n+1)+zn2 Zn(n—‘f—l) an
n=1 n=1 n=1 n=1 n=1 n=1
Now,
1 1 n+1 n 1

2 nm+1D) 2+l 2+l n2m+1)
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so, for M large,

Moo
S~1+ _
;nz(n+l)

o]

(b) The series Z?f:l m converges more rapidly than Z niz since the degree of n in the denominator is larger.
(¢) Using a computer algebra system, we find =

1000 100

nX::l — = 1.6439345667 and 1+ nX::l m = 1.6448848903.

2
. .. . Ve
The second sum is more accurate because it is closer to the exact solution < ~ 1.6449340668.

10.4 Absolute and Conditional Convergence

Preliminary Questions
1. Give an example of a series such that Z ap converges but Z lan | diverges.
SOLUTION The series Z G converges by the Leibniz Test, but the positive series ZL is a divergent p-series.
sn ’ In
2. Which of the following statements is equivalent to Theorem 17?
o o
(a) If Z lan| diverges, then Z ap also diverges.
n=0 n=0
o (0.¢]
(b) If Z ay diverges, then Z |ay| also diverges.
n=0 n=0
o o
(c) If Z ay converges, then Z lan| also converges.
n=0 n=0
o oo
SOLUTION The correct answer is (b): If Z ay diverges, then Z lay| also diverges. Take a;, = (—l)”% to see that
n=0 n=0
statements (a) and (c) are not true in general.
o
3. Lathika argues that Z (—1)""/n is an alternating series and therefore converges. Is Lathika right?
n=1

o
SOLUTION No. Although Z (—1)""4/n is an alternating series, the terms a,, = /n do not form a decreasing sequence

n=1
00

that tends to zero. In fact, a, = /7 is an increasing sequence that tends to 0o, so Z (—1)"/n diverges by the Divergence

n=1

Test.

o
4. Suppose that a;, is positive, decreasing, and tends to 0, and let S = Z ="~ L4, What can we say about |S — Sigol
n=1
ifajg) = 10732Is § larger or smaller than Sygp?
SOLUTION From the text, we know that [S — Sjoo| < ajo1 = 1073, Also, the Leibniz test tells us that Son < S < SN+
for any N > 1, so that S1gg < S.

Exercises
1. Show that
o (="
>
n=0
converges absolutely.
e 1
SOLUTION The positive series 227 is a geometric series with r = 7 Thus, the positive series converges, and the
n=0

given series converges absolutely.
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In Exercises 3—10, determine whether the series converges absolutely, conditionally, or not at all.
3 ( 1)” 1
Z —i5
00 -1 n—1

—73 1s positive, decreasing, and tends to zero; hence, the series Z By
n=1

]

SOLUTION The sequence a, = converges

o
by the Leibniz Test. However, the positive series Z
_1

is a divergent p-series, so the original series converges

conditionally.

o (=Dt
> r;) (1.1H)"

oo n
SOLUTION The positive series Z (ﬁ) is a convergent geometric series; thus, the original series converges abso-
n=0" "
lutely.
oo
(=D"
7.
Z nlnn
n=2

SOLUTION Leta, = Then a, forms a decreasing sequence (note that n and In n are both increasing functions of

oo o0
(=" 1
n) that tends to zero; hence, the series Z converges by the Leibniz Test. However, the positive series Z
nlnn nlnn
n= n=
diverges, so the original series converges conditionally.

X cosnm
g 3 cosnn
2
o (Inn)
SOLUTION Since cos nr alternates between +1 and —1,
i cos nw Z =D"
b (lrm)2 (lnn)2

This is an alternating series whose general term decreases to zero, so it converges. The associated positive series,

nlnn

o0

1
ngz (Inn)?

is a divergent series, so the original series converges conditionally.

ad 1
11. Let S = Z(—l)”+ln—3
n=1
(a) Calculate S, for 1 <n < 10.
(b) Use Eq. (2) to show that 0.9 < § < 0.902.

SOLUTION

(a)

1
S =1 S = S5 — &= 0.899782407

Sy=1— =1 _ 0875
2T BT
1
S3= S+ 33 = 0.912037037
1
S = 83— 73 = 0.896412037

1
S5 = S+ 23 = 0904412037

1

S7 =S¢ + 7 = 0.902697859
1

Sg =87 — PE] = 0.900744734
1

Sg = Sg + % =0.902116476

1
S10 = S9 — 0 =0.901116476
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(b) By Eq. (2),

1
S10—=S| a1 = —,
[S10 = S| < an 3
SO
S ! <S=<Si+-—=
10~ 173 10+ 3
or
0.900365161 < § < 0.901867791.
(— l)nJrl
13. Approximate Z ————— to three decimal places.
n=1
o (=Dt 1
SOLUTION LetS = ZT so that a, = n—4. By Eq. (2),
n=1

1

SN =S| <a = —.
ISy — S| < an+1 N

To guarantee accuracy to three decimal places, we must choose N so that

NI <5%x107* or N > v2000—1~5.7.

The smallest value that satisfies the required inequality is then N = 6. Thus,

L L g ous767804
St @t si T gr = 0946767824,

SHSe=1- EL VTR TR

In Exercises 15 and 16, find a value of N such that Sy approximates the series with an error of at most 1075. If you have
a CAS, compute this value of Sy.

i ( 1)n+1
ot n(n +2)(n + 3)

o (=pmH! !
LetS = ———  sothat = ———— ByEq. (2),
SOLUTION Le ;n(n+2)(n+3) so that ay, P T y Eq. (2)
1
(N+DIN+3HN+4)

ISy — S| <any1 =

‘We must choose N so that

1 _s 5
NI DNIHN D <10 or (N+1)(N+3)(N+4)>10".

For N = 43, the product on the left hand side is 95,128, while for N = 44 the product is 101,520; hence, the smallest
value of N which satisfies the required inequality is N = 44. Thus,

44

(_1)n+1
S Syy = ———— = 0.0656746.
“ ; n(n +2)(n + 3)

In Exercises 17-32, determine convergence or divergence by any method.
o0
17. y 77"
n=0

SOLUTION This is a (positive) geometric series with r = 7 < 1, so it converges.
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1
1. Z sn _3n
n=1

1
SOLUTION Use the Limit Comparison Test with S—n:

. 1/Er =3 . 5" . 1
L=lm —— = lm —— = lim —— =1
11— 00 1/5" n—oo 5n — 31 np—oo0 1 — (3/5)"
But Y% is a convergent geometric series. Since L = 1, the Limit Comparison Test tells us that the original series
n=1 zn 5

converges as well.

s 1
21. -
ngl 3n4 + 12n

SOLUTION Use the Limit Comparison Test with

304’
. (1/Ga* +12n) , 3nt , 1
L=lm ——=lim ———— = lim — =
n—00 1/3n% n—00 3p4 4 12n  n—oo 1+4n~3
But Zn 15,3 =3 Z 4 is a convergent p-series. Since L = 1, the Limit Comparison Test tells us that the original

series converges as well.

23.
Z —— =
SOLUTION Apply the Limit Comparison Test and compare the series with the divergent harmonic series:

1

2
L= lim X4 _ jim =1

n—oo 1 n— 00 /
n

o
Because L > 0, we conclude that the series Z diverges.
\/n +1

00
D
n=1

SOLUTION The series

is a convergent geometric series, as is the series

(1)"2" X 2\
> oS

n=1 n=1

( mied i(i)nJri(—?)n

n=1 n=1 =1

Hence,

also converges.

o0
27. Y (—1)'ne 3

n=1

. . " . —n3 . .
SOLUTION Consider the associated positive series Z n%e™"" /3. This series can be seen to converge by the Integral
n=1
Test:
® 5 —x3/3 . k 2 —x3/3 . —x3/3|R —1/3 . —R3/3 —1/3
x“e dx = lim x“e dx =— lim e ’129 + lim e =e .
1 R—o00 J1 R—o0 R—o0

The integral converges, so the original series converges absolutely.
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29 i&
. o nl/2(1nn)2

SOLUTION This is an alternating series with a, = Because gy is a decreasing sequence which converges

nl/2(Inn)?’
(="

———>——— converges by the Leibniz Test. (Note that the series converges only conditionally, not
nl/2(Inn)?

o
to zero, the series E
n=2

absolutely; the associated positive series is eventually greater than ——, which is a divergent p-series).

n3/4’
X Inn
3. ) ,1.05
n=1

SOLUTION Choose N so that forn > N we have Inn < 790l Then

00 00 1
Z Z nl.04

n=N n=N

;001

o0
= 105 —

n=N n

Inn
1,05

This is a convergent p-series, so by the Comparison Test, the original series converges as well.
33. Show that
P N R N B S S
2 2 3 3 4 4
converges by computing the partial sums. Does it converge absolutely?

SOLUTION The sequence of partial sums is

1
S| = 3
1
S, =9 — 7= 0
1 1
S3 =58+ 5 = §
1
Sq4 =83 — 3= 0
and, in general,
1
—, forodd N
Sy = N
0, for even N

Thus, lim Sy = 0, and the series converges to 0. The positive series is
N—o00

SR T —2§:I~
22 3 3 4 4 =t

which diverges. Therefore, the original series converges conditionally, not absolutely.

3s. & Assumptions Matter Show by counterexample that the Leibniz Test does not remain true if the sequence
ay, tends to zero but is not assumed nonincreasing. Hint: Consider
+ : ] +
n 2"

11 1 1 1 1
1 1+1 +1 l+ N 1 1 N
T2 4 3 8 4 16 n+1 ontl

R=-—--
2 4 + 3 8 4 16
This is an alternating series with

SOLUTION Let

R

1

—, n=2k-1
L
) =

1

o =k

Note that a;, — 0 as n — oo, but the sequence {a; } is not decreasing. We will now establish that R diverges.
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For sake of contradiction, suppose that R converges. The geometric series

Z +
n 1
n=

converges, so the sum of R and this geometric series must also converge; however,

1

le'e] le'e] 1
R+ Z 2n+l = Z ;’
n=1 n=2

which diverges because the harmonic series diverges. Thus, the series R must diverge.

37. Prove that if Zan converges absolutely, then Z a,% also converges. Then give an example where Z ay is only

conditionally convergent and Z a,% diverges.
SOLUTION  Suppose the series Zan converges absolutely. Because Zlanl converges, we know that
nl_i)moo lay| = 0.
Therefore, there exists a positive integer N such that |a,| < 1 for all » > N. It then follows that forn > N,
0 < ay = lanl® = lan| - lan| < lan| - 1 = |an].

By the Comparison Test we can then conclude that Zaﬁ also converges.
(="
n
[} (—1)" 00 e}
divergent p-series; that is, Z NG is conditionally convergent. Now, Zag is the divergent harmonic series Z
n
n=1 n=1 n=1

Thus, Z a,zl need not converge if Z ap is only conditionally convergent.

o0
Consider the series Z

n=1

. This series converges by the Leibniz Test, but the corresponding positive series is a

1

n.

Further Insights and Challenges

39. Use Exercise 38 to show that the following series converges:

1 1 2 1 1 2

m2 3 md 5 In6 In7

SOLUTION The given series has the structure of the generic series from Exercise 38 with a; = m Because ay, is
a positive, decreasing sequence with lim a, = 0, we can conclude from Exercise 38 that the given series converges.
n—oo

41. Show that the following series diverges:

Hint: Use the result of Exercise 40 to write S as the sum of a convergent series and a divergent series.

SOLUTION Let

and

For sake of contradiction, suppose the series S converges. From Exercise 40, we know that the series R converges. Thus,
the series S — R must converge; however,

1 1 1 1 1
S—R—= -4+ —4 — 4..=_ -,
4+8+12+ 4Zk

which diverges because the harmonic series diverges. Thus, the series S must diverge.
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43. We say that {b, } is a rearrangement of {a, } if {6, } has the same terms as {a; } but occurring in a different order. Show
o o0

that if {,,} is a rearrangement of {a, } and S = Z ay converges absolutely, then 7 = Z by also converges absolutely.

n=1 n=1
N

(This result does not hold if S is only conditionally convergent.) Hint: Prove that the partial sums Z |by| are bounded.
n=1
It can be shown further that S = T'.
oo
SOLUTION Suppose the series S = Z ay converges absolutely and denote the corresponding positive series by

n=1

oo
ST =2 lanl.
n=1

N 9]
Further, let Ty = Z |bn | denote the N'th partial sum of the series Z |bn|. Because {b,} is a rearrangement of {a, }, we

n=1 n=1
know that

oo
0<Ty <Y lanl=5T;

n=1
that is, the sequence {7} is bounded. Moreover,

N1
Tys1= Y |bnl =Ty + lbyyil = Ty:
n=1

o o
that is, {7} is increasing. It follows that {7} converges, so the series Z |by | converges, which means the series Z bn
n=1 n=1

converges absolutely.

10.5 The Ratio and Root Tests

Preliminary Questions

. . . Aap+1 . an
1. In the Ratio Test, is p equal to lim or lim ?
n—oo | ay n—>00 | ay 4|
. . .. . an +1
SOLUTION In the Ratio Test p is the limit lim |——]|.
n—>o0 | ap

o0 o0
1 1
2. Is the Ratio Test conclusive for Z ?? Is it conclusive for Z -2
n

n=1 n=1
o
Th 1 f i L h
SOLUTION e general term o 227 isap = 27’t us,
n=1
ap4+1 _ 1 2" _ 1
ap | ol o1 2
and
a 1
p= lim [ =~ 2.
n—>oo | ay 2
o0
Consequently, the Ratio Test guarantees that the series Z o converges.
n=1

o
1. 1
The general term of Z — is a, = —; thus,
n n
n=1
an+1 1 n n
an

Th+l 1t
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and
. a
p = lim ntl) =1.
n—>0oo | ap n—oon+ 1
00

The Ratio Test is therefore inconclusive for the series Z —.
n=1
3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?

SOLUTION No. The Ratio Test can only establish absolute convergence and divergence, not conditional convergence.

Exercises
In Exercises 1-20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.
o0
1
1. —
5”
n=1
SOLUTION With @, = 37,
1 5"

1 .
=5n+1 ng and 'O=n11>moo

1

dnt1 =-<1.
5

an

ap+1
dan

o
1
Therefore, the series Z = converges by the Ratio Test.

n=1
1
Y -
n=1

soLuTION With a, = -,

Ant 1 n" 1 n \" 1 ™"
= - —_— = = 1 + - R
an m+Drtl 1 n+ 1 \n+1 n+1 n
and
1
p = lim dntl =0--=0<1.
n—>o0 | ap e
= 1
Therefore, the series Z —- converges by the Ratio Test.
n=1 "

as n
5.
Z l’l2 + 1
n=1
n

SOLUTION Witha, = ——,
n“+1

ap1| n+1 n2—|—1_n+1 n?+1
an | m+D2+1 n on  n24+2n+2
and
p= lim [ 1=
n—>oo an
o
Therefore, for the series Z - the Ratio Test is inconclusive.
n 1

n=1
‘We can show that this series diverges by using the Limit Comparison Test and comparing with the divergent harmonic
series.

n

S, 2
72w
n=1

. on
SOLUTION VWith a;, = 55,
n = 100

on+1 100 n 100
(n+1)100 2n (n + 1)

ap+1
dn

ap+1
dn

=2.1100 51,

and p= nl_i)moo

n

o0
2
Therefore, the series Z —50 diverges by the Ratio Test.
n

n=1
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o0
10"
9. > byl
n

=1

SOLUTION Witha, = ;SZ
2
1om+tt on 1
Gntll o 2 —10-—— and p= lim | —10.0=0<1.
an 2(n+1)2 10" 22n+1 n—oo | ay
0 n

. 10 .

Therefore, the series Z —5 converges by the Ratio Test.
2}’1

n=1
o0 En
1T —
n=1

SOLUTION VWitha, = 5,

py el n" e n \" e N
= —_— = = 1—{-— s
an m+ Dl en n+1\n+1 n+ 1 n
and
1
p= lim [&H) 0. 220 <1.
n—oo | ay e

X n
. e .
Therefore, the series E —- converges by the Ratio Test.
n

n=1
o I’l'
13. ) o
n=0
n!

SOLUTION With g, = &

n! 6" 1
it | _ (A DEGT n and p= lim Intl) oo > 1.
an 6+l n! 6 n—oo| a,
|
Therefore, the series Z ) diverges by the Ratio Test.
n=0
1
15.
Z nlnn
n=2
SOLUTION VWitha, = ﬁ
ant+1| 1 nlan  n Inn
an | +DInr+1D) 1 ~ a+lhx+1)’
and
1
o= lim I+l _ 1. Iim L
n—oo| a, n—o0 In(n + 1)
Now,
. Inn . Inx . 1/(x+1) .
Iim —— = lim ——— = lim —— = lim =
n—ooln(n+1) x—ooln(x +1) x—oo 1/x x—00 x + 1
S
Thus, p = 1, and the Ratio Test is inconclusive for the series Z .
- nlnn

o
1
Using the Integral Test, we can show that the series E o diverges.
nlnn
=2

o0 n2
17. Y —
n; @2n +1)!

SOLUTION Witha, = ﬁ
ang1| n+1% @n+1)! _(n+1 2 1
an | @2n+3)! n2 \ n Q2n+3)2n+2)’
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and
p= lim [Z*H 2. 0=0<1.
n—>0o | ap
00 2
. n .
Therefore, the series Z ——— converges by the Ratio Test.
2n + 1)!
n=1
= 1
19. —_—
2
n=2
so ON With !
LUTION itha, = ——,
T4
any1| 1 28+ 1 14277
an | 2tlypr 1 2427
and
1
p=lim | =~ <
n—00 | ay 2
o
Therefore, the series X; ST converges by the Ratio Test.
n=

oo
21. Show that Z nk3n converges for all exponents k.

n=1

SOLUTION With a, = nk37",

an nk3—n 3 ’
and, for all k,
1 1
p= lim |&H =~ =2 <1
n—oo | a 3 3

o0
Therefore, the series Z nk3=n converges for all exponents k by the Ratio Test.

n=1

o
23. Show that Z 2"x™ converges if |x| < %

n=1
SOLUTION With a, = 2""x",
2n+1 |x|n+1

21| x|

An+1
dan

An+-1
an

=2|x|] and ,o:rlliﬁrnOo =2|x]|.

oo
Therefore, p < 1 and the series Z 2"x" converges by the Ratio Test provided |x| < %

n=1
X n
r .
25. Show that Z — converges if [r| < 1.
n
n=1
SOLUTION With g, = %

1
An+1| _ r|"t n

an

An+1

an

= -—=|r|7n and p= lim
n+1 |r? n+1 n—00

=1-Ir|=Irl.

X n
’
Therefore, by the Ratio Test, the series E — converges provided |r| < 1.
n

n=1
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. n! ) ) 1\"
27. Show that 2:1 i converges. Hint: Use nll)moo (1 + ;) =e.
n=

. !
SOLUTION With a, = 17,

1| @m+D! At n \" 1_’_1 "
an | @+t wl T \n+1) T n ’
and
1
p = lim dntl =—-<1.
n—oo| ay, e

o
. n! .
Therefore, the series Z —. converges by the Ratio Test.
n

n=1

In Exercises 28-33, assume that |a,1/an| converges to p = % What can you say about the convergence of the given
series?

o0
29. Z n3an
=1

SOLUTION Let b, = n3an. Then

3
b 1 1
p= lim |7 = g (P}l o3l 2 o
n—oo| by, n— 00 n a 3 3
[e¢)
Therefore, the series Z n3an converges by the Ratio Test.
n=1
o
31 ) 3,
n=1
SOLUTION Let b,, = 3"a,,. Then
b 3n+1 1
p= lim |24 = fim Gntll 3. - =1.
n—oo| by, n—oo 3N an 3

o0
Therefore, the Ratio Test is inconclusive for the series Z 3qy,.

n=1
oo
33. ) a7
n=1

SOLUTION Let b, = a2. Then

p = lim
n— oo

by

bn+1 ‘

o
Therefore, the series Z aﬁ converges by the Ratio Test.

n=1

o0
1
35. Is the Ratio Test conclusive for the p-series Z 7?
n

n=1

SOLUTION With g, = %

Ap+1
an

an+1
an

=17 =1

1 nP n \? : y
- . _ an = lim
n+1DHP 1 n+1 P n—00
o0

Therefore, the Ratio Test is inconclusive for the p-series Z

n=1

1
n7.
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In Exercises 3641, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).
1
3.3 =
n=1

SOLUTION With g, = n—l,l

a1 1 . .
[an, = n7:; and nll>m004/an_0<l.

o0
1
Therefore, the series Z —- converges by the Root Test.
n

n=1
00 k
k
39. Z <7>
= \3k+ 1

k
SOLUTION VWith g = (%kﬁ) s

ko \F k 1
Yag = | = lim Yag == <1.
U (3k+ 1) 1 dlim Vae= g <

k

k
——— | converges by the Root Test.
3k+1

o0
Therefore, the series Z (
k=0

9] 1 —n?
41. —
> (1 + n)
n=4
. 1\—n?
soLuTIoN Withay = (1+ )",
Ya, = <l+;> = <1+;> and nli)moo Ya, =e " < 1.

2

o0 —
] n
Therefore, the series E (1 + 7) converges by the Root Test.
n
n=4

In Exercises 43-56, determine convergence or divergence using any method covered in the text so far.

o
2 4 4n
43. > —
n=1
SOLUTION Because the series

X oon X o\ X g X A\
Z;FZ(;) and Z7=Z(7>
n=1 n=1 n=1 n=1

are both convergent geometric series, it follows that

also converges.

oo 3
45. 31
5”

n=1

3

SOLUTION The presence of the exponential term suggests applying the Ratio Test. With a, = g—,,
D5

An+1 13 d — 1
T 5n+1 ,73_5 +; an 'O_nl>moo

an

ap+1
an

3
. n- .
Therefore, the series E m converges by the Ratio Test.

n=1
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47. Z
5 V3 —n?
SOLUTION This series is similar to a p-series; because
1 1 1

/i3 —n2  Nn3  n3?

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = % Now,

/ 3
n —Vl .
L= lim ~——— = lim
n—oo n—>oo
,,3/2

The p-series with p = j converges and L exists; therefore, the series Z \/; also converges.

o0
49. Zn*os
n=1

SOLUTION

S

so that this is a divergent p-series.

o0
51. Z 4—21’["1‘1
n=1

SOLUTION Observe

24—2n+l 24 @2y = Z ( 16)n

n=1

is a geometric series with » = Lﬁ therefore, this series converges.

|
53. Z sin )
n=1
SOLUTION Here, we will apply the Limit Comparison Test, comparing with the p-series with p = 2. Now,

| .
. Sim-3 . sinu
L = lim = lim =1,
n—-oo u—>0 U
2

o
where u = 1— The p-series with p = 2 converges and L exists; therefore, the series Z sin — also converges.
n?

n=1
00 (—2)n
55. )
n=1
SOLUTION Because
2¥In2
lim — = lim —— = lim 12— lim 2t /X2 =00 £ 0,
n—00 f X—>00 f X—00 # X—00
X

00 n
. . -2
the general term in the series E

does not tend toward zero; therefore, the series diverges by the Divergence Test.

n=1

Further Insights and Challenges

o
57. & Proof of the Root Test Let S = Z ay be a positive series, and assume that L = l_i)moo Yay, exists.
n
n=0
(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1 and show that a;, < R" for n sufficiently large.
Then compare with the geometric series Z R".
(b) Show that S diverges if L > 1.
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SOLUTION Suppose lim Ya, = L exists.
pp n—oo

1-L
@ IfL <1,lete = — By the definition of a limit, there is a positive integer N such that
—e < ¥a, — L <e¢

for n > N. From this, we conclude that
0< ¥a, <L+¢€

forn > N.Now, let R = L + €. Then

I-L L+1 1+1

R=L 1,
Tt 2 "2

and

0< Yap <R or 0<a, <R"

o0 o0
forn > N.Because 0 < R < 1, the series E R" is a convergent geometric series, so the series E ay converges by

n=N n=N
o0

the Comparison Test. Therefore, the series Zan also converges.
n=0

L—1
() If L > 1,lete = — By the definition of a limit, there is a positive integer N such that

—e < ¥a, —L<e¢
for n > N. From this, we conclude that
L—¢€< {ay,

forn > N.Now, let R = L — €. Then
L-1 L+1 1+1

R=L— = > =1,
2 2 2
and
R< Ya, or R"<ay,
o0 o
for n > N. Because R > 1, the series Z R" is a divergent geometric series, so the series Z ap diverges by the
n=N n=N
o
Comparison Test. Therefore, the series Zan also diverges.
n=0

o0 noy
c"'n! .
59. Let S = Z ——, where c is a constant.
nn
n=1
(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.
iy

. . e'n! . . .
(b) Itis known that nl;moo prany; ~/27. Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for ¢ = e.

SOLUTION

. g
(a) Witha, = S35,
an+1
an

e lm4+nt ot (- ”_H AN
T (n+ Dl ICI”n!_C n+1 =l n ’

ap+1

and

. -1
= lim =|cle .
p= lm |c]

cn!
n

oo
Thus, by the Ratio Test, the series Z converges when |c|e_1 < 1, or when |c| < e. The series diverges when

n=1

n

le| > e.
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(b) The table below lists the value of nﬁl"ii'l’;z for several increasing values of n. Since +/2m = 2.506628275, the numerical
evidence verifies that

o
lim — " — /2x.

n—o0 ph+1/2

n 100 1000 10000 100000

e'nl 2508717995 | 2.506837169 | 2.506649163 | 2.506630363

a2

e'n!
nn

o0
(¢) With ¢ = e, the series S becomes Z

n=1

. Using the result from part (b),

e"n!

1 "y
L= lim 2= = lim —"_ = 27.

n—oo /n  n—oopntl/2 -

o o
Because the series Z /n diverges by the Divergence Test and L > 0, we conclude that Z

n=1 n=1
Comparison Test.

en

1
Z' diverges by the Limit
n

10.6 Power Series

Preliminary Questions

1. Suppose that Z ayx™ converges for x = 5. Must it also converge for x = 4? What about x = —3?

SOLUTION The power series Zanx" is centered at x = 0. Because the series converges for x = 5, the radius of
convergence must be at least 5 and the series converges absolutely at least for the interval |x| < 5. Both x = 4 and
x = —3 are inside this interval, so the series converges for x = 4 and for x = —3.

2. Suppose that Z ay (x — 6)"" converges for x = 10. At which of the points (a)—(d) must it also converge?
(a) x =38 (b) x =11 (c) x=3 d x=0
SOLUTION The given power series is centered at x = 6. Because the series converges for x = 10, the radius of

convergence must be at least |10 — 6] = 4 and the series converges absolutely at least for the interval |x — 6| < 4, or
2 <x < 10.

(a) x = 8isinside the interval 2 < x < 10, so the series converges for x = 8.
(b) x = 11 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 11.
(¢) x = 3isinside the interval 2 < x < 10, so the series converges for x = 2.

(d) x = 01is not inside the interval 2 < x < 10, so the series may or may not converge for x = 0.

3. What is the radius of convergence of F'(3x) if F(x) is a power series with radius of convergence R = 127

SOLUTION If the power series F(x) has radius of convergence R = 12, then the power series F(3x) has radius of

convergence R = % =4.

o
4. The power series F(x) = Z nx" has radius of convergence R = 1. What is the power series expansion of F’(x)

n=1
and what is its radius of convergence?

SOLUTION We obtain the power series expansion for F’(x) by differentiating the power series expansion for F(x)
term-by-term. Thus,

00

F/( _ 2. n—1

X) = E n°x .
n=1

The radius of convergence for this series is R = 1, the same as the radius of convergence for the series expansion for
F(x).
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Exercises
o .Xn
1. Use the Ratio Test to determine the radius of convergence R of Z =;; - Does it converge at the endpoints x = £R?
n=0

. n
SOLUTION Witha, = )2‘—,,

a xutl on X a X
ntl| _ x| . — U and p= lim G+l _ U
an |~ 2T kT 2 n~oo| ap | 2
By the Ratio Test, the series converges when p = % < 1, or |x] < 2, and diverges when p = %l > 1, or |x] > 2.
The radius of convergence is therefore R = 2. For x = —2, the left endpoint, the series becomes Z;’;O(—l)”, which is

divergent. For x = 2, the right endpoint, the series becomes Z;’;O 1, which is also divergent. Thus the series diverges at
both endpoints.

3. Show that the power series (a)—(c) have the same radius of convergence. Then show that (a) diverges at both endpoints,
(b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.

oo xn o0 xn o0 xn
@ L » Y5 © Y 1
n=1 n=1 n=1
SOLUTION
(a) Withay, = 5.
) api xn+] 3n ) X X
p = lim = lim |[—— - —| = lim }—’:’7)
n—oo | ay n—oo |3ntl  xn n—o00 |73 3

Then p < 1if |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

0 an 00
2=t
n=1 n=1

which diverges by the Divergence Test. For the endpoint x = —3, the series becomes
[e¢) o
(=3)" n
>y
n=1 n=1

which also diverges by the Divergence Test.
(b) With a, = %5

n3"’
K n3"
(n + 1)3n+1 T

n—o0

an+1
an

p = lim
n—oo

fL_‘f‘
3\n+1/|" 131

Then p < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

= Imm
n—oo

00 an o
= L
n=1 n=1
which is the divergent harmonic series. For the endpoint x = —3, the series becomes
n3n n '
n=1 n=1
which converges by the Leibniz Test.
(c) Witha, = ;2‘7,
. Ant1 P n23" X n \? X
p=lim |—| = : = lim |- | —— :‘7‘
n—oo| ap n—00|(n 4 1)23n+1  xn n—oo|3 \n+1 3

Then p < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

n

= 3 1
Z 23n = Z n2’
n=1 n=1

n
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which is a convergent p-series. For the endpoint x = —3, the series becomes
n23n n2 '
n=1 n=1

which converges by the Leibniz Test.

o0
5. Show that Z n"'x" diverges for all x # 0.
n=0

SOLUTION With a, = n"x", and assuming x # 0,

(l’l + 1)n+1xn+1

n"x"

An+1
dn

= lim

n—oo

o= lim
n—oo

x<l+l) (n—l—l)‘:oo
n

= lim
n—>oo

p < 1 onlyif x = 0, so that the radius of convergence is therefore R = 0. In other words, the power series converges
only for x = 0.

. o 12" .
7. Use the Ratio Test to show that Z TS has radius of convergence R = /3.
2n n=0
SOLUTION With g, = TR
. n1 . L2+ 3n 2 2
p = lim =lm |—— - ——|= lim |—|=|—
n—>oo | ay n—oo| 3n+l x2n n—oo| 3 3
Then p < 1 when |x2| < 3, 0or x = +/3, so the radius of convergence is R = V3.
In Exercises 9-34, find the interval of convergence.
o
9. Z nx"
n=0
SOLUTION With a;, = nx",
. a . n+ DHx"tl . n+1
p = lim Dt Jim ¥=hm X = |x]|
n—>oo | ap n—o00 nxh n—o00

Then p < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the interval

o0
|x] < 1, or —1 < x < 1. For the endpoint x = 1, the series becomes Z n, which diverges by the Divergence Test.
n=0
o
For the endpoint x = —1, the series becomes Z(— 1)"n, which also diverges by the Divergence Test. Thus, the series
n=1
(.¢]
Z nx" converges for —1 < x < 1 and diverges elsewhere.
n=0
0 x2n+1
11. -
2"
n=1
x2n+1
SOLUTION Witha, = (—1)" ,
2"n
_ x2m+D+1 2n B x2 no| x2
p_ngnoo 2"+1(n+1).x2"+1 _ni>moo 7'n+1 2

Then p < 1 when |x| < +/2, so the radius of convergence is R = +/2, and the series converges absolutely on the interval

o) —\/E o) 1 \/E
—/2 < x < /2. For the endpoint x = —4/2, the series becomes E -H'—= = Z(—l)"Jr —, which converges
n n
=1

n=1
00

2
by the Leibniz test. For the endpoint x = /2, the series becomes Z (=" i which also converges by the Leibniz test.
n=1 n
2n+1

2n

o0
Thus the series Z(—l)" ol

n=1

converges for -2 <x< /2 and diverges elsewhere.
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o0 n
X
3. 3
n=4
SOLUTION Witha, = %

il nd
(n+1)35 xn

= = |x]|
n— 00

= lim [x|——
n—oo n+1

Then p < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval
o

|x] < 1,0or =1 < x < 1. For the endpoint x = 1, the series becomes Z - which is a convergent p-series. For the

n=1
. . =n" x"
endpoint x = —1, the series becomes Z , which converges by the Leibniz Test. Thus, the series Z — converges
n=1 n= 4

for —1 < x <1 and diverges elsewhere.

00 n

X
15 ) —
n2
b (n!)
. n
SOLUTION Witha, = (::W
n+1 y 2 1 2
p = lim dntl lim |—— . )7 im |x =0
n—oo| a, | n—>oo|((n4+ N2 x" n—00 n+1

p < 1 for all x, so the radius of convergence is R = 00, and the series converges absolutely for all x.

o
(2n)!
17. ) =5
n3
) (n!)
SOLUTION With g, = (2(”3))3( , and assuming x # 0,
- apst Qn+ D)™t ;3 Qn+2)2n+1)
p= lim |—| = . = lim x——————
nmoolap | onmool (DD @ml| om0 (n+1)3
. 4n? +6n 42 . an~l 4 6n—1 y 2073
= lim x—4———F5————| = lim |x =0
n—00|"n3 +3n2 4+ 3n + 1 n—>00|" 1 4+3p~1 43p=2 4 3

Then p < 1 for all x, so the radius of convergence is R = 0o, and the series converges absolutely for all x.

( 1)” n
> Z N

1\
SOLUTION With a, = (E1°X

241’

(—ntlyntl n?+1

p= lim |&tL = jim :
n—oo | ay n—o00 /n2+2n+2 (=Dnxn
. n2+1 i 241 ) 1+ 1/n2
= lim y—————| = lim |x,| ——— lim |x 72
n—00 /n2+2n+2 n—o00 +2n—|—2 T n—>oo 1+2/n—|—2/n
= |x|

Then p < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval
o
(=n"

WEEE

o
endpoint x = —1, the series becomes Z \/; which diverges by the Limit Comparison Test comparing with the
ns+1

—1 < x < 1. For the endpoint x = 1, the series becomes Z which converges by the Leibniz Test. For the

( 1)}’1 n

Wt

divergent harmonic series. Thus, the series E converges for —1 < x < 1 and diverges elsewhere.
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0 2n+1
X
21. 3 7
n=15 n+
x2n+1
SOLUTION VWitha, = s
3n+1
. lanr X3 341 23n+1 2
p= lim |—| = S — X = x|
n—oo| ay n—oo |3n +4 x2n+l n— 00 3n+4

Then p < 1 when |x2| < 1, so the radius of convergence is R = 1, and the series converges absolutely for —1 < x < 1.

o
For the endpoint x = 1, the series becomes Z EPanE which diverges by the Limit Comparison Test comparing
n=15 "
0 p—
with the divergent harmonic series. For the endpoint x = —1, the series becomes Z Il which also diverges by
nmtis T
00 x2n+1
the Limit Comparison Test comparing with the divergent harmonic series. Thus, the series ol converges for
n=15 "

—1 < x < 1 and diverges elsewhere.

X n

X

23. =

‘= Inn

. n
SOLUTION Witha, = lan

Xl Inn

G+l A
In(n+1) x"

dan

In(n+1) .
x—| = lim

= X
n—)oo‘ Inn n—oo

p=lim,

1
n—oo —>00

‘XM‘_ lim
I/n | n

‘ZIXI

n+1

using L’Hopital’s rule. Then p < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely
o0

on the interval |x| < 1, or —1 < x < 1. For the endpoint x = 1, the series becomes Z o Because ﬁ > % and
n=2
1
Z — is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = —1,
n
n=2

O n
, which converges by the Leibniz Test. Thus, the series Z lx— converges for—1 < x < 1
nn

(_ l)n

o0
the series becomes
2:2 Inn
e

and diverges elsewhere. "=
o
25. ) n(x—3)"
n=1
SOLUTION Witha, = n(x — 3)",
p = lim dntl) _ lim W': lim (x—3)-m‘:|x—3|
n—oo | ay n—o00 n(x —3)" n—o00 n

Then p < 1 when |[x — 3| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval
o

|x — 3] < 1,0r2 < x < 4. For the endpoint x = 4, the series becomes Z n, which diverges by the Divergence Test.

n=1
00

For the endpoint x = 2, the series becomes Z(—l)”n, which also diverges by the Divergence Test. Thus, the series

n=1
o0

Z n(x — 3)" converges for 2 < x < 4 and diverges elsewhere.

n=1

o
27. ) (="« =)
n=1

SOLUTION With a, = (—1)"n5(x — 7)",

- |ant LG N R S Gt S B (n+1)°
p= lim |——| = lim = lim [(x—-7) - ———
n—=>00 | ap n— o0 (—])"ns(x -t n—00 5

5
= lim (x_7).n+5""=|x_7|
n— 00 n
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Then p < 1 when |[x — 7| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

o o0
[x =7 < 1,0r 6 < x < 8. For the endpoint x = 6, the series becomes 2:(—1)2”115 = Z n5, which diverges by the

n=1 n=1

o0
Divergence Test. For the endpoint x = 8, the series becomes Z(— 1)”n5 , which also diverges by the Divergence Test.

n=1
00

Thus, the series Z (=" n’ (x —7)" converges for 6 < x < 8 and diverges elsewhere.

n=1

— 2” n
29, Z 5(x +3)

n=1

SOLUTION With a, = W
2n+1 3 n+l1 3 3
o= lim Gtl| _ im (x+3) ) n — tim et 3). n
n—oo | ay n— o0 3(n+1) 2 (x + 3" s 13
n;moo‘(x-}—) 1_’_1/”‘ [2(x + 3)|

Then p < 1 when |[2(x + 3)| < 1, so when |x 4+ 3| < % Thus the radius of convergence is %, and the series converges

o0
1
absolutely on the interval |x + 3| < %, or —% <x < —%. For the endpoint x = —%, the series becomes Z —,
ot 3n

which diverges because it is a multiple of the divergent harmonic series. For the endpoint x = —%, the series becomes
o0 n X Hn

(=D . . . 2 n 7 5
Z = which converges by the Leibniz Test. Thus, the series Z 3—(x + 3)" converges for -5 <x<-—3 and
n=1 " n=1 "
diverges elsewhere.

o

(_5)}1 n

3L ) 410

n=0

: _ (=9 n
SOLUTION With g, = - (x + 10)",
_5 n+1 10 n+1 ! 1
p = lim a”—“:lim (=™ «+10) . " = lim [5(x+10)—|=0
n—=00 | ap n—>00 (n+1)! (=5)"(x +10)" n— 00 n
o (=5)"
Thus p < 1 for all x, so the radius of convergence is infinite, and Z ' (x + 10)" converges for all x.
=
o0

3. ) -2

n=12
SOLUTION Witha, =" (x —2)",

) g1 ) e"+1(x _2)n+1 ]
p=lim |[—|= lim |[———| = lim |e(x —2)| = |e(x — 2)|
n—>oo | ap n—o0 e(x —2)" n—oo

Thus p < 1 when |e(x —2)| < 1, so when |x — 2| < e~ L. Thus the radius of convergence is ¢!, and the series converges
absolutely on the interval |x — 2| < el or2—e ! <x<2+¢ ! Forthe endpoint x = 2 + e~ 1, the series becomes

o o
Z 1, which diverges by the Divergence Test. For the endpoint x = 2 — e~ !, the series becomes Z (—1)", which also
n=1 n=1
o0
diverges by the Divergence Test. Thus, the series Z e (x —2)" converges for 2 — e l<x<2+eland diverges
n=12

elsewhere.
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In Exercises 3540, use Eq. (2) to expand the function in a power series with center ¢ = 0 and determine the interval of

convergence.
35. =
SO =15
SOLUTION Substituting 3x for x in Eq. (2), we obtain
1 o o
T Z(3x)" = Z3”x”.
o n=0 n=0

This series is valid for |3x| < 1, or |x| < %

3. f(x) =

SOLUTION First write

— X

Substituting % for x in Eq. (2), we obtain

Thus,

This series is valid for |x/3] < 1, or |x| < 3.
1
39, f(x) = ——
7o 14+x2

SOLUTION Substituting —x2 forx in Eq. (2), we obtain

[e.e] o0
— Z(_XZ)H — Z(_l)nXZn
n=0 n=0

This series is valid for |x| < 1.
41. Use the equalities

to show that for [x — 4| < 3,

n l(x )
7_2( Dl 3n+1

SOLUTION Substituting —)‘3;4 for x in Eq. (2), we obtain

o]

1 ( x—4>” T
—_—= -~ =) (=)
1+ (55 Zo 3 ,,go 3

n=|

Thus,

:_72( A —Z( 1)’““()‘3,1+1

This series is valid for | — "3;4| < 1,or |x —4| < 3.
43. Use the method of Exercise 41 to expand 1/(4 — x) in a power series with center ¢ = 5. Determine the interval of
convergence.

SOLUTION First write

1 1 3 1
4—x  —1-(x=5  1+@x-=5"
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Substituting —(x — 5) for x in Eq. (2), we obtain

o
1+(x Z( x=5)"=) (D" -5"

Thus,
] o0 o0
D DG UCERUED B C AR CEDE
n=0
This series is valid for | — (x — 5)] < l,or |[x — 5| < 1.

45. Apply integration to the expansion

1

o0
=Z(—l)"x"=l—x+x2—x3+~--

14+x fr

to prove that for —1 < x < 1,
Sl —1,n 2 3 4
(—D" 'x X X X
In(1 = x4
n ) ’; n SR T T E

SOLUTION To obtain the first expansion, substitute —x for x in Eq. (2):

1 oo
— = 2(—@" = Z( D,

This expansion is valid for | — x| < l,or -1 < x < 1.
Upon integrating both sides of the above equation, we find

ln(l+x):/1+x / Z( D"x" | dx.

Integrating the series term-by-term then yields

00 xntl
In(1 =C -t
n(l +x) +§( S
To determine the constant C, set x = 0. Then 0 = In(1 + 0) = C. Finally,

In(l +x) = Z( 1)"

47. Let F(x) = (x + 1) In(1 + x) — x.
(a) Apply integration to the result of Exercise 45 to prove that for -1 < x < 1,

n+1

n+1_ %
Fe) = Z( R,

n=1
(b) Evaluate at x = 1o prove
> top!

31 301 1 1 N 1 1 N
no - — _ _
272 2 1.2.22 2.3.23 3.4.24 4.5.25

(c) Use a calculator to verify that the partial sum S4 approximates the left-hand side with an error no greater than the
term as of the series.

SOLUTION
(a) Note that

/ln(x+l)dx:(x+1)ln(x+l)—x+C
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Then integrating both sides of the result of Exercise 45 gives
0 (_ l)n— 1 xn
(x+1)ln(x+l)—x:/ln(x—}—l)dx =/27dx
n=1 "

For —1 < x < 1, which is the interval of convergence of the series in Exercise 45, therefore, we can integrate term by
term to get

o]

. 1 ~ (—1)"_1 _— 00 (—l)n_l X+l co 0 1n+1 x+l c
R T R D e R Ml i

n=1 n=1 n=1

(noting that (=" = (=1)"*t1). To determine C, evaluate both sides at x = 0 to get
0=In1-0=04+C

so that C = 0 and we get finally

0 + X+l
1 1)—x= S ) LI
(x+ DIn(x+1) —x };( D
(b) Evaluating the result of part(a) at x = % gives
3.3 1 o 1
—In-—-= B L R —
2 2 2 ;( ) n(n + 1)2n+l1
1 Lo, Lo,
T 1.2.22 2.3.23 0 3.4.24 4.5.25 7
©
Sy = ! ! + ! ! =0.1078125
YT 22 233 T34 4585
as = ——— ~ 0.0005208
>75.6.26
31 3_1 0.10819766
“In=— - =0.
2 2 2
and
3.3 1
Sy — =—In- — =| ~0.0003852 < a5
2 2 2
49. Use the result of Example 7 to show that
Fo x2 x4+x6 x8+
¥) = _ _ I
1-2 3.4 5.6 7-8

1

is an antiderivative of f(x) = tan™' x satisfying F(0) = 0. What is the radius of convergence of this power series?

SOLUTION For —1 < x < 1, which is the interval of convergence for the power series for arctangent, we can integrate
term-by-term, so integrate that power series to get

I o (_l)nx2n+l 0 x2n+2
F = tan~ dx = - dx = I —
*) /an xdx=), mr1 2D n + D)2 +2)
n=0 n=0
x2 x4 x6 XS
= - 4+ 2 4..4cC

1-2 3.4 7.8

5.6
If we assume F(0) = 0, then we have C = 0. The radius of convergence of this power series is the same as that of the
original power series, which is 1.
o
51. Evaluate Z 2% Hint: Use differentiation to show that

n=1

o
A=072=Y" "1 (for|x| < 1)
n=1
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soLUTION Differentiate both sides of Eq. (2) to obtain
1 o
n—1
T_a2 Z nxe o
1—=x) ot

Setting x = % then yields

(o] n A

Divide this equation by 2 to obtain
o
D
n
n=1

53. Show that the following series converges absolutely for |x| < 1 and compute its sum:
4 7

l\)‘:

R T

Hint: Write F(x) as a sum of three geometric series with common ratio %3,

F(x):l—x—x2—|—x3—x

SOLUTION Because the coefficients in the power series are all £1, we find

An+1
an

r = lim =1.

n—oo

The radius of convergence is therefore R = r~1 =1, and the series converges absolutely for |x| < 1.

By Exercise 43 of Section 10.4, any rearrangement of the terms of an absolutely convergent series yields another
absolutely convergent series with the same sum as the original series. Following the hint, we now rearrange the terms of
F(x) as the sum of three geometric series:

F@ =1+ 4204 ) = (a7 ) = (Pt 4 af )

ad > o 1 X x? 1—x—x2
3\n 3\n 2..3\n A
= x) — x(x)" — x“(x)" = — — = .
D D DR i DR e e Tl g Rl B e e
n=0 n=0 n=0
00 xn2
55. Find all values of x such that Z — - converges.
o
22
SOLUTION Witha, = xn—,
e R I Y e
an (n+ D! |xn? n+1"
if x| < 1, then
|x|2n+1
lim =0,
n—oo n+1
and the series converges absolutely. On the other hand, if |x| > 1, then
|.X I2)‘l+1
n—oo pn—+1 = ’
00 an
and the series diverges. Thus, Z — converges for —1 < x < 1 and diverges elsewhere.
n=1 "
o0
57. Find a power series P(x) = Z ayx™ satisfying the differential equation y’ = —y with initial condition y(0) = 1.
n=0
Then use Theorem 1 of Section 5.8 to conclude that P(x) = e~ *.
(0.¢]
SOLUTION Let P(x) = Z anx" and note that P(0) = ay; thus, to satisfy the initial condition P (0) = 1, we must take
n=0

ag = 1. Now,

o0
P'(x) =) napx""",
n=1
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S0
o0 o o
P'(x)+ P(x) = Z nanx”_1 + Z anx" = Z [(n + Day41 + an]x".
n=1 n=0 n=0
In order for this series to be equal to zero, the coefficient of x" must be equal to zero for each n; thus
an
1 =0 =——.
(n+ Dayt1 +an or dpy| P
Starting from ag = 1, we then calculate
ag
= —— = —1,
aj ]
aj 1
aj)y = —— = —;
2T T2 72
ar 1 1
a3=——=—— ;
3 6 3!
and, in general,
1
ap = (—D)"—.
n!
Hence,
oo ; x"
P(x)=>) (-1 —
n=0
The solution to the initial value problem y’ = —y, y(0) = 1is y = e~~. Because this solution is unique, it follows that

P(x) = Z(—l)”);—’ — e,
n=0 :

59. Use the power series for y = ¢* to show that

1 1 1 1

P TR TR TR

Use your knowledge of alternating series to find an N such that the partial sum Sy approximates e~ ! to within an error
of at most 10™3. Confirm this using a calculator to compute both Sy and e 1.

SOLUTION Recall that the series for e* is

&\ xh _ 1 2 X3 Xt

Zm— +x+§+§+ﬂ+-~.

n=0
Setting x = —1 yields

“1_1_1 1 1 1 1 1 1
TR TR TR TR TR
This is an alternating series with a,, = ﬁ The error in approximating e~ ! with the partial sum Sy is therefore
bounded by
1

-1
Sy — < =—.
SN —e | <an4 N 12!

To make the error at most 10_3, we must choose N such that

o

(N+2)! ~
For N =4, (N 4+ 2)! = 6! = 720 < 1000, but for N = 5, (N + 2)! = 7! = 5040; hence, N = 5 is the smallest value
that satisfies the error bound. The corresponding approximation is

1 1 1 1 1
Ss=5 =3+ 5+ g = 0368055555

1073 or (N +2)!>1000.

Now, e~! = 0.367879441, so
1S5 —e 1 =1.761 x 107% < 1073.
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61. Find a power series P (x) satisfying the differential equation

Y =xy +y=0 9]

with initial condition y(0) = 1, y’(0) = 0. What is the radius of convergence of the power series?

o0
SOLUTION Let P(x) = Z anx". Then
n=0

o0 o0
P'(x) = Z napx™! and P(x) = Z n(n — Dapx" 2.
=1 n=2

Note that P(0) = ag and P’(0) = ay; in order to satisfy the initial conditions P(0) = 1, P’(0) = 0, we must have ap = 1
and a; = 0. Now,

o o o
P"(x) = xP'(x) + P(x) = Z n(n — Dapx" "2 — Z napx" + Z anx"
n=2 n=1 n=0

o o o0
= Z(n +2)(n + Dayqx" — Z napx" + Z anx"
n=0 n=1 n=0

o
=2ay +ap+ Z [(n+2)(n + Dayyo — nap + an | x".

n=1
In order for this series to be equal to zero, the coefficient of x” must be equal to zero for each n; thus, 2a; + ag = 0 and
n+2)(n+ Day4r — (n— 1)a, =0, or
n—1
e E—— 1 4
n+2)(n+1)

ay = —an and a,49 = n.

Starting from a; = 0, we calculate

1-1
“=eot ™"
2
as = mag, =0;
4
ar = mas =0;
and, in general, all of the odd coefficients are zero. As for the even coefficients, we have ag = 1, ap = —%,
1 1
“=BHEHT
3 3
“TOe“ T e
5 15
“EHHC T w

and so on. Thus,

1 1 3 15
Px)=1- x2S i
2 4! 6! 8!

To determine the radius of convergence, treat this as a series in the variable x2, and observe that

. laskso 2k —1
r = lim =lim ——— =0
k—oo| ax k—oo 2k +2)2k + 1)
Thus, the radius of convergence is R = rl = 0.

63. Prove that

e¢]

_ (=D* 2%+2
20) = ];) 22k 3)

is a solution of the Bessel differential equation of order 2:

"

xzy +xy + (x2 —4)y=0
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o]

(=¥ 2%e+2
SOLUTION Let Jr(x) = —_— X . Then
2(%) §22k+2k! (k +2)!

00 k
DR +1) o
B0 = ;) PGl

i DR+ DR+ D)

/" _
200 = 22k+1 k) (k 4 2)!

and

Z( DY+ D)2k + 1) 2k+2+i (—Dkk + 1) k42

2 g1 / 2
J +xJ5(x) + -4 Jh(x 22kH1 21 (b 1
2 () () + (x )2 (x) = 221 k1 (k 4 2)! = 22k+1 k1 (k + 2)!

o0

(—DF — (=D
_ Z w2t _ Z 22
= 22Zk+2 k1 (k + 2)! = 22k k1 (k + 2)!

_Z (=D*k(k +2) 2k+2+§: (-t (242
2k (k +2)! — 22k (k — D! (k + 1)!

00 k 00 k
-y =D 22§ b 2k _ g
= 22Kk = DIk + 1! = 2%k = DIk + D!

Further Insights and Challenges

o
65. Suppose that the coefficients of F(x) = Z anx™ are periodic; that is, for some whole number M > 0, we have
n=0
api+n = an. Prove that F(x) converges absolutely for |x| < 1 and that
ag+aypx +---+ aM_lxM_1
F(x)=
1—xM

Hint: Use the hint for Exercise 53.
SOLUTION  Suppose the coefficients of F(x) are periodic, with ays4+, = a, for some whole number M and all n. The
F(x) can be written as the sum of M geometric series:

F(X)=ao<1+xM—|—x2M+--~)+a1 (x+xM+1+x2M+l+-~)—|—

=a2(x2+xM+2+x2M+2+-~->+-~-+aM_1 (XM—1+X2M—1+X3M—1+W)

ap apx a2x2 n aM,lfol a0+a1x+a2x2+---+aM,1x

1—xM 1—xM 1—xM 1—xM 1—xM

M—-1

As each geometric series converges absolutely for |x| < 1, it follows that F'(x) also converges absolutely for |x| < 1.

10.7 Taylor Series

Preliminary Questions
1. Determine f(0) and "’ (0) for a function f (x) with Maclaurin series

T(x):3+2x+12x2+5x3+~-~
SOLUTION The Maclaurin series for a function f has the form

f! (0) 1 " © 2 f " © 3
fO+ o 3l 4

f///(o)
3!

Matching this general expression with the given series, we find f(0) = 3 and = 5. From this latter equation, it

follows that £/ (0) = 30.
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2. Determine f(—2) and f “ (—2) for a function with Taylor series

T(x) =30 +2)+x+2?—40x+2° +20x +2)* +

SOLUTION The Taylor series for a function f centered at x = —2 has the form
7 "_o @ (—2
ren+ L ( s+ L ( )( 2+ 3(, )(x+2)3+%(x+2)4+
92

Matching this general expression with the given series, we find f(—2) = 0 and = 2. From this latter equation,

41
it follows that f(4)(—2) — 48.

3. What is the easiest way to find the Maclaurin series for the function f(x) = sin(xz)?

SOLUTION The easiest way to find the Maclaurin series for sin (xz) is to substitute x> for x in the Maclaurin series for

sin x.

4. Find the Taylor series for f(x) centered at ¢ = 3 if f(3) = 4 and f’(x) has a Taylor expansion
o
(x —3)"
/ p—
floy=3 —
n=1
SOLUTION Integrating the series for f’(x) term-by-term gives

(x — 3)n+1
fH=Cc+ Z nn+1) °

Substituting x = 3 then yields

f3 =
SO

00
B (x —3)ntl
fx)= 4+y§ m

5. Let T (x) be the Maclaurin series of f(x). Which of the following guarantees that f(2) = T'(2)?
(a) T(x) converges for x = 2.
(b) The remainder Ry (2) approaches a limit as k — oo.

(c) The remainder Ry (2) approaches zero as k — oo.

SOLUTION The correct response is (¢): f(2) = T'(2) if and only if the remainder Ry (2) approaches zero as k — oo.

Exercises
1. Write out the first four terms of the Maclaurin series of f(x) if
foO =2, =3 [o=4 f"0=12

SOLUTION The first four terms of the Maclaurin series of f(x) are

0 (0 4 12
f() _|_f © X3 =24+3x+ 242 + = :2+3x—|—2x2+2x3.

FO + £/ O)x + 7, 3 R

In Exercises 3—18, find the Maclaurin series and find the interval on which the expansion is valid.

3 fx) =

1—2x

SOLUTION Substituting 2x for x in the Maclaurin series for ﬁ gives

= Z(Zx)" = Z 2Ny,

n=0

This series is valid for |2x| < 1, or |x| < %
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5. f(x) =cos3x

SOLUTION Substituting 3x for x in the Maclaurin series for cos x gives

0 (3x)2 gny2n
cos 3x = ng)(—l)" T Z(— ) L
This series is valid for all x.
7. f(x) = sin(x?)
SOLUTION  Substituting x2 for x in the Maclaurin series for sin x gives
2)2n+1 0 xan+2

sin x2 Z(— ) (2n+1)' = Z( )] G

This series is valid for all x.

9. f(x) =In(1 —x?)

SOLUTION Substituting —x2 for x in the Maclaurin series for In(1 + x) gives

o 1 s 2n—1 2n o 2n
(=D~ ( x2 (- 1) x
n(l-xh=) =) =),
n=1 n=1 n=1
This series is valid for |x| < 1.
11. f(x) =tan~" ! (x2)

SOLUTION Substituting x2 for x in the Maclaurin series for tan~! x gives

(x2)2n+1 Sl 4n+2

—1,.2 n _ n
%) = Z( DT Z(—) —

This series is valid for |x| < 1.

13. f(x) =" 2

SOLUTION ¢*~2 = ¢~ 2¢%; thus,

n

oox > x
ng lgezn'

This series is valid for all x.
15. f(x) =In(1 — 5x)

SOLUTION Substituting —5x for x in the Maclaurin series for In(1 + x) gives

1”1 5x)" 00 12n15nn c>0Snn
In(1 — 5x) = Z( ) ( X) Z ) :_Z X
n=1 n=1 n=1
This series is valid for |5x| < 1, or |x| < %, and for x = _%.
17. f(x) = sinhx
SOLUTION Recall that
sinhx = —(e¥ —e™)
Therefore,
I s (=x)" Xy
inhx = - - - = 1— (-1
MY =3 Z:n! ; nl zz(nv)( ="
n=0 n=0 n=0
Now,
0, neven
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SO
00 2k+1 00 2k+1
—_—
N I; 22k + 1) g Qk+ DU

This series is valid for all x.

In Exercises 19-28, find the terms through degree four of the Maclaurin series of f (x). Use multiplication and substitution
as necessary.

19. f(x) = ¢ sinx

SOLUTION Multiply the fourth-order Taylor Polynomials for ¢* and sin x:

L +x2+x3+x4 3
T T e T\ T

3 3 4 4
2_ % + % - % + % + higher-order terms

X
=x+x2+ 3 + higher-order terms.

The terms through degree four in the Maclaurin series for f(x) = ¢* sin x are therefore

’/.3
2

+ + —.
X X 3

sin x

21 ()= 1

1

— X

SOLUTION Multiply the fourth order Taylor Polynomials for sin x and 1

x3
x—z <1+x+x2—|—x3+x4)

4

3
- 2. L34
=x+x 5 +x7 +x G + higher-order terms
) 5x3 5x4 .
=x+x"+ o + o + higher-order terms.

The terms through order four of the Maclaurin series for f(x) =

nx
are therefore
—x

n +5x +5x
X +x —_—+ —
6 6

23, fx)=(1+x)l/*
SOLUTION The first five generalized binomial coefficients for a = % are
1(=3 1(=3 =7 1 (=3 =7 —11
C i) s i(@E) s i@FEE)E)

Lo, A -, =
4 2! 32 3! 128 4! 2048

Therefore, the first four terms in the binomial series for (1 + x) 1/4 are

7 77
ja 32, 7 3 77 4
Tt TR T s T 208"

25. f(x) =¢€* tan~! x

SOLUTION Using the Maclaurin series for e* and tan !

extan_lx— 1+x+£+£+... x_£+... —x+x2_ﬁ+£+é_ﬁ+,..
B B 372 6 3

x, we find

2 6 3

1 1
_ 2,23 _ 2.4, .
=x+x +6x 6x+ .
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27. f(x) = SiN¥
SOLUTION Substituting sin x for x in the Maclaurin series for ¢* and then using the Maclaurin series for sin x, we find
sin?x  sin?x N sin® x

6 24

2
e S ) oS ) e L
— X — — —_ X — — —(x—=--- —(x =
6 2 6 6 24

1
2_ .3 - _ - o
6F "6 6 24

SMY =1 4 sinx +

1
=1 —
+x+2x

Ihxd a2 = 1ty
= X+ —x—=x" 4.
2" 78

In Exercises 29-38, find the Taylor series centered at ¢ and find the interval on which the expansion is valid.

1
29, fx)=—, c=1
X
SOLUTION Write

1 1
x 1+@Ex-=1

and then substitute —(x — 1) for x in the Maclaurin series for ﬁ to obtain

1 o0 o0
== nX:(:)[—(x DI = Z}f‘” (=1

This series is valid for |[x — 1| < 1.

31. f(x) = , ¢=5
1—x
SOLUTION  Write
I 1 1 1
l—x —4—(x-5 4 14+ 527
Substituting —=7= 3 for x in the Maclaurin series for ;= yields
o oo
5\" (x —=5"
-3 (— ) =Tty
= n=0
Thus,
———Z( e Z( &9
- 4qn+1
This series is valid for %‘ < 1l,or|x —5] <4

3B, f)=x*+3x—-1, c=2

SOLUTION To determine the Taylor series with center ¢ = 2, we compute
) =4ax3+3, f/x)=12x2, " (x) = 24x,
and f @ (x) = 24. All derivatives of order five and higher are zero. Now,
f@ =21 f'@=35 [f'@=48 ["@2) =48
and f ) (2) = 24. Therefore, the Taylor series is
21+435(x —2) + ?(x -2% + %(x -2+ %(x -2,
or

21 +35(x —2) +24(x —2)% + 8(x — 2)3 + (x — 2)*.



SECTION 10.7 | Taylor Series 701

35. f(x):%, c=4

SOLUTION We will first find the Taylor series for < and then differentiate to obtain the series for . Write

1 _ 1 _ 1 1
x 4+(x-—4) 4 14 574
Now substitute - 4 for x in the Maclaurin series for L to obtain

1 I a/ x—4 iy
=i Z< P
Differentiating term-by-term yields
4yn= 1

n =D
2}1) e

n=1

so that
n—1 0 n
n—1, (x—=4" x—4)
Z( D 4n+1 Z( D'+ D= gn+2
n=0
This series is valid for ’%4‘ <lor|x—4] <4
37. f(x) ! 3
f)=——, ¢c=
1—x2
SOLUTION By partial fraction decomposition
1 1
1 2 2
1—x2 1—x + 14+x’
SO
1 1
I _ 2 42ttt 1
1—x2 —2-(x-=-3) 44+(x-=3) 4 1_|_L53 8 1_{_%
Substituting — % for x in the Maclaurin series for ﬁ gives
1 s ( x—3>” X (=1)" "
—a =2 =2 o=
I+ 2 n=0 2 n=0 2
while substituting — % for x in the same series gives
1 ( X — 3) >, (—1n
= (x =3)"
Thus,
(1W w1 (2D " (=pH! 0 0
__72 x=3) +§Z 4n (r=3) Z n+2 (o =3) +222+3( x=3)
n=0 n=0

GV Gl n e (DT et - 0
= Z ( iz T oas | = > 22143 x—3)"
n=0 n=0
This series is valid for [x — 3| < 2.
39. Use the identity cos? x = %(l + cos 2x) to find the Maclaurin series for cos? x.

SOLUTION The Maclaurin series for cos 2x is

o0 2n 2n 2n
e 2
Z%q)@“’ Z} )@w
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so the Maclaurin series for cos? x = %(l + cos2x) is
1 1 00 1 n 22nx2n
+( +Zn:1(_ ) T ) s Z( 1)nzZn 1,2n
2 (Zn)!

41. Use the Maclaurin series for In(1 4+ x) and In(1 — x) to show that

L (12 +x3+x5+
1. I AN S
M\ 1) T T3 s

for [x| < 1. What can you conclude by comparing this result with that of Exercise 40?

SOLUTION Using the Maclaurin series for In (1 4+ x) and In (1 — x), we have for |x| < 1

00 n—1 n— 1
1n(1+x)—1n(1—x):2( 1) Z( 1) )
n=1

n=1
o0 1 o0 o0 1
nt- 1 nt-
= S ey P
n=1 n:ln n=1

Since 1 + (—1)" "' = 0 forevenn and 1 + (—1)"~! = 2 for odd n,

o0

2 okl
In (1 —hl-x)=Y ——— _
n(l+x)—1In( x) ZZk—i—lx
k=0
Thus,

1 1 1 ) 0 2k+1
I () = 2 (n(1 +x) —In(l —x) = 5 PR
2 1—x 2 2k—02k+] k_02k+1

Observe that this is the same series we found in Exercise 40; therefore,

1 1
—1In s —tanh ! x
2 1—x

, that for |x| < 1,

43. Show, by integrating the Maclaurin series for f(x) =

1
V1—x2
oo

L 1-3.5...2n—1) x2nt1
1. _
s x_x+r; 2.4.6---n) 2m+1

SOLUTION From Example 10, we know that for |x| < 1

i 1)x2n:1+§1.3-5...(2n—1)x2,,
1_x2 “ (Zn) — 2.4.6---(2n) ’
n=0 n=1

so, for |x| < 1,

1-3.5..-2n —1) x2n+!
_C+x+z - )

.1 / dx
sin” " x = .
_2 = 24620 2n+1

Since sin~! 0 = 0, we find that C = 0. Thus,

| 1:3.5--2n—1) x2n+l
sin”— X—X+Z 2-4-6---(2n) 2n+1"

45. How many terms of the Maclaurin series of f(x) = In(1 + x) are needed to compute In 1.2 to within an error of at
most 0.0001? Make the computation and compare the result with the calculator value.

SOLUTION Substitute x = 0.2 into the Maclaurin series for In (1 + x) to obtain:

> 02" &
Inl1.2 = Z(—l)”_li( n) = Z(_l)n_lsTn
n=1

n=1
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This is an alternating series with a, = e Using the error bound for alternating series
n-

1
Inl1.2—Sy| <a =
| Nl =an4i (N 1 5N
so we must choose N so that

— - <0.0001 or (N4 15N> 10,000.

(N 4+ D5N+I ( )
For N =3, (N + )5V = 4.5% = 2500 < 10,000, and for N =4, (N + )5V *!1 =5.5% = 15,625 > 10, 000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is:

S_iil_l_ Lo b L ois0066666
YT LTy 5 22 83 staa '

Now, In 1.2 = 0.182321556, so

[In1.2 — S4] = 5.489 x 10> < 0.0001.

. . 2 . 2 . Lo
47. Use the Maclaurin expansion for e ™"~ to express the function F(x) = f(')x e~ " dt as an alternating power series in x
(Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate the integral for x = 1 to within an error of at
most O 001?

(b) £A'S  Carry out the computation and check your answer using a computer algebra system.

v

X
FIGURE 4 The Maclaurin polynomial T15(x) for F(¢) = / e_t2 dt.
0

SOLUTION Substituting —12 for ¢ in the Maclaurin series for e’ yields

2\n
e = 27( t.) —Z( 1) —

n=0
thus,

2n+1

-2
/ di = Z( n’(2n+1)

(a) Forx =1,

1
—12
/ di = Z( n’(2n+ D’

This is an alternating series with a, = n'(TI—H); therefore, the error incurred by using Sy to approximate the value of
the definite integral is bounded by
L
/ e dt—S§ N
0

To guarantee the error is at most 0.001, we must choose N so that
1
(N + D!2N +3)

For N =3, (N + 1)!2N +3) = 4!-9 =216 < 1000 and for N =4, (N + D!2N + 3) = 5!- 11 = 1320 > 1000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is

1

< =  —------
SANFL = N T ICN £ 3)

< 0.001 or (N + D!2N +3) > 1000.

i N 11 1 1
Z 1Ly _ n = 0.747486772.
— nl(2n + 1) 37205 31,7 4.9
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(b) Using a computer algebra system, we find
L5
/ e ' dt = 0.746824133;
0
therefore

= 6.626 x 1074 < 1073,

1 2
/ e dt— S,
0

In Exercises 49-52, express the definite integral as an infinite series and find its value to within an error of at most 1074,

1
49. / cos(x?) dx
0

SOLUTION Substituting x2 for x in the Maclaurin series for cos x yields

4n

cos(x?) = Z( (2 ), = Z(— " ot

therefore,

00 4n+1

1
2 — " xi
/0 cos(x”) dx ’12:(:)( ) G|,

i (="
0 Qn)ln+ 1)

This is an alternating series with a, = therefore, the error incurred by using Sy to approximate the value of

1 .
2n)!(4n+1)°
the definite integral is bounded by

1

< =
SANHLT ON 1 2)I4N £ 5)

1
/ cos(xz) dx — Sy
0

To guarantee the error is at most 0.0001, we must choose N so that
1
(2N +2)!(4N +5)

For N =2, (2N 4+ 2)!(4N +5) = 6! - 13 = 9360 < 10,000 and for N = 3, 2N +2)!(4N +5) = 8! - 17 = 685,440 >
10,000 thus, the smallest acceptable value for N is N = 3. The corresponding approximation is

< 0.0001 or (2N +2)!(4N +5) > 10,000.

S 1 1 1
Z =1- + - = 0.904522792.
— (2n)!(4n + 1) 5.2 9.4 13.6!

I3
51./ e ¥ dx
0

SOLUTION Substituting —x3 for x in the Maclaurin series for e* yields

00 3)n o0 x3n
n
D I e e
n=0 n=0
therefore,
1
3n+1 o —_1n
/ —x3 dx = Z( — #
0 n‘(3n+1) 0n!(3n+1)

This is an alternating series with a;, = therefore, the error incurred by using Sy to approximate the value of

1 .
n!(3n+1)°

I3
/ e dx — Sy
0

To guarantee the error is at most 0.0001, we must choose N so that

the definite integral is bounded by

1

< =
SINFL = N T DIGN + 4)

1

00001 N+ 1)!GN +4) > 10,000.
(N+DIGN +4) or (N+DIGN+4H > 10,
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For N =4, (N + 1)!(3N +4) =5!-16 = 1920 < 10,000 and for N =5, (N + 1)!(3N +4) = 6! - 19 = 13,680 >
10,000; thus, the smallest acceptable value for N is N = 5. The corresponding approximation is
5

(=D"
Ss= Y — 2 —0.807446200.
> X_%) nl(3n + 1)

In Exercises 53-56, express the integral as an infinite series.
X1 —cos(t
53. / % dt, forall x
0

SOLUTION The Maclaurin series for cos ¢ is

2n S 2n

o0
. _ nt . R t
cost_r;)( 1) (Zn)!_1+;( 1) G

SO
2n o0 [
— _ 1\ _ n+1
1l —cost =— Z( 1) (2 0= —1) (2 N
and
1—cost 1 Z( yi+l 2 B i( )n—i-lt n-l
t t @n)! @2n)!
1 n=1

Thus,

X1 —cos(t) > 41 £2n 41X
_ _ n —_ _ 1\
/0 t di = r;( b @m)12n |, _,;( b @n)2n’

X
55./ In(1 + %) dt, for|x| <1
0

SOLUTION Substituting 12 for ¢ in the Maclaurin series for In(1 + t) yields

5 'S} ](tz) 00 tzn
_ 1\ n
In(1+1t7) = E (=D " E: - —

n=1
Thus,

2n+1 x 00 2n+1

x 00
2 _ _1\n _ 1\ X
/O In(1+ %) dt =y " (~1) 7n(2n+1)0_’2( D T

n=1 n=1

o0
57. Which function has Maclaurin series Z (=12 x™?
n=0

SOLUTION We recognize that
o oo
D" =Y (2"
n=0 n=0

is the Maclaurin series for ﬁ with x replaced by —2x. Therefore,

o
o=yt = : _
1—(=2x)  14+2x

In Exercises 59-62, use Theorem 2 to prove that the f(x) is represented by its Maclaurin series for all x.

59. f(x) —sm( )—|—cos(3)

SOLUTION All derivatives of f(x) consist of sin or cos applied to each of x/2 and x/3 and added together, so each

summand is bounded by 1. Thus ) F® () ’ < 2 for all n and x. By Theorem 2, f(x) is represented by its Taylor series for
every x.
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61. f(x) =sinhx
SOLUTION By definition, sinhx = %(ex — e™¥), so if both ¢* and e™* are represented by their Taylor series centered
at ¢, then so is sinh x. But the previous exercise shows that e~ is so represented, and the text shows that e*

In Exercises 63-60, find the functions with the following Maclaurin series (refer to Table 1 on page 599).

. 1 X0 X2 x12
+ X + 5 + ? + T + -
SOLUTION We recognize
6 9 x12 o0 x3n 0 (x3)n
I+ x3 + = -|- —t -+ — =
3! 4! n! n!
n=0 n=0
as the Maclaurin series for e* with x replaced by x3. Therefore,
] X0 XY xI12 o
+ X + * + ? + T + - .
5303 590 5747
R I TR
SOLUTION Note
53,3 55,5 57,7 3,3 55,5 57,7
T T T R TR R TR
(Sx)2n+1
=1-5 -
o Z( AT
The series is the Maclaurin series for sin x with x replaced by 5x, so
53x3 55x5 57X7 '
1-— 3l + TR + .-+ =1—=>5x 4+ sin(5x).

In Exercises 67 and 68, let

IO E—

VT o) —20
67. Find the Maclaurin series of f(x) using the identity
1

L I T g

SOLUTION Substituting 2x for x in the Maclaurin series for 1 gives

= Z(Zx) Zan”

n=0

which is valid for [2x| < 1, or |x| < % Because the Maclaurin series for ] is valid for |x| < 1, the two series

—Xx
together are valid for |x| < % Thus, for |x| < %,

1 2 1 2%2’1" i 0
= — = X — X
I-20)(-x) 1-2x 1-x & —=

o0
_ Z ontlyn _ Zx Z <2n+1 _ 1) .
n=0

n=0

69. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time 7 is
Vv
1(t) = (E) (1— e Ri/L)

Vit
Expand I (#) in a Maclaurin series. Show that [ (r) &~ T for small 7.
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SOLUTION  Substituting — 5 for t in the Maclaurin series for ¢’ gives
00 _&>n n n n
—Rt/L _ ( L =D = 1) n
D D -y - =1+ Z E
n=0 n=0
Thus,

00 n n 00 n+1 n
_ o RUL _ CEDTRN ) _ & (R
I—e =1 1+ Z n! L ! - Z n! L ’
and

(=11 noyr V& 1)”“ Rt
ro= g S () - R —(7)"

n=1 n=2

If ¢ is small, then we can approximate / (¢) by the first (linear) term, and ignore terms with higher powers of ¢; then we
find

Vi)~ —

71. Find the Maclaurin series for f(x) = cos(x3) and use it to determine f(6) 0).

SOLUTION The Maclaurin series for cos x is

00 2n
n
cosx = —
X Z( D 2n)!
n=0
Substituting x3 for x gives
6n

3 n
mw}ig“)aw

Now, the coefficient of x© in this series is

11 f90
200 27 6

SO

6!
) = —5 = —360

73. & Use substitution to find the first three terms of the Maclaurin series for f(x) = exzo. How does the result
show that f® () =0for1 <k < 19?

SOLUTION Substituting x29 for x in the Maclaurin series for ¢* yields

20 n o On
20
oy oy
n=0 n=0
the first three terms in the series are then
1
1+x20 4+ £x40‘

Recall that the coefficient of x* in the Maclaurin series for fis (0) .For 1 < k < 19, the coefficient of x* in the

. . 20
Maclaurin series for f(x) = ¥ is zero; it therefore follows that

F®0)

_ *®) 0y =
0 =0 or fY0O0)=0

forl <k <19.
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75. Does the Maclaurin series for f(x) = (1 + x)3/ 4 converge to f(x) at x = 2? Give numerical evidence to support
your answer.

SOLUTION The Taylor series for f(x) = (1 + x)3/ 4 converges to f(x) for [x| < 1; because x = 2 is not contained on
this interval, the series does not converge to f(x) at x = 2. The graph below displays

N o3
Sy = i o
=2 (1)
n=0
for 0 < N < 14. The divergent nature of the sequence of partial sums is clear.
Sy
151
101

SMA
0N\

— Y\ Ny
246810\]214

77. Let f(x) = T+ x.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f. What
do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid forx = 1 and x = —1.

SOLUTION

(a) The five first terms of the Binomial series with a = % are

SRION (ISt I (S T IO (RO TR P

X
2! 3! 4!

1 1 9 45
=l4gx—grtgr -3

Therefore, the first five Taylor polynomials are

To(x) = 1;

1
Ti(x) =1+ Ex;

1 1
Ty(x) =1+ 5x = ga®s
Ty =14 b L2y 13
X) = X — =X —Xx7;
3 2778 8

Ty =14 beo L2 L3 0 4
1(x) = 5%~ g% g~ TRk
The figure displays the graphs of these Taylor polynomials, along with the graph of the function f(x) = +/1 4 x, which

is shown in red.

The graphs suggest that the interval of convergence for the Taylor series is —1 < x < 1.
N /1
(b) Using a computer algebra system to calculate Sy = Z ( 3 )x" for x = 1 we find
n=0

Sio = 1.409931183, 100 = 1414073048,  Sjg00 = 1.414209104,
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N
which appears to be converging to V2 as expected. At x = —1 we calculate Sy = Z ( 2 ) - (=", and find
n
n=0

S0 = 0.176197052,  Sjg0 = 0.056348479,  Sjg00 = 0.017839011,

—

which appears to be converging to zero, though slowly.

79. Use Example 11 and the approximation sin x & x to show that the period 7' of a pendulum released at an angle 6 has

the fO“OWing SeCOnd-Order approximation:
2T

SOLUTION The period T of a pendulum of length L released from an angle 9 is

/L
T =4 |ZEk),
g

where g ~ 9.8 m/ s2 is the acceleration due to gravity, E (k) is the elliptic function of the first kind and k = sin % From
Example 11, we know that

Tn(1:3:5--2n—1)\? »,
E(k)zzg(mm(%)> .

Using the approximation sin x & x, we have

D

k =sin — =
2

moreover, using the first two terms of the series for E (k), we find

AN 62
L /L( 92>
T=4|—Ek)~2n |— |1+ —].
g g 16

In Exercises 80-83, find the Maclaurin series of the function and use it to calculate the limit.

Therefore,

X3

. sinx —x +
81. lim —s
x—0 X

SOLUTION Using the Maclaurin series for sin x, we find

x2n+1 3 x> x2n+1

T 1y
sinx = Z( i =Y st +Z( Voo
Thus,
x3 2n+1
smx—x—i—zzlzo—!—Z( (2n+1)'
and
P x (2n—4
sSin x X+ 6 _ +Z( n—
x5 120 (2n+1)’

Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x — 0 it suffices
to evaluate it at x = 0:

. 3
sinx —x + % ] 1 i p2n—4 1 1

im " 76 i [ — iy o — 0= —
o P o 120+n§( Vv ] T 120 70T 120

x—0 x—0
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: 2
83. lim sin(x<) _ cosx
x—0 x4 x2

SOLUTION We start with

2n+1
sinx = Z( (2n+1)‘ cosx = Z( (2n)’
so that
Sll'l(.X ) 4n+2 4n 2
D— T D
(2n+ Dlx (2n+1)‘
o 2n—2
cos x X
= "
x2 Z( ) 2n)!
n=0
Expanding the first few terms gives
sm(x ) 1 Z( S x4n—2
X2 2n +1)!
cosx 1 x2n—2
= — — — + — nX
x2 x2 Z( D @2n)!
so that
sin(xz) cosx Z( oy xHn—2 Z( x2n—2
x4 B @n +1)! (2 )!

n=1

Note that all terms under the summation signs have positive powers of x. Now, the radius of convergence of the series
for both sin and cos is infinite, so the radius of convergence of this series is infinite. Recall from the previous section that
a convergent power series is continuous within its radius of convergence. Thus to calculate the limit of this power series
as x — 0 it suffices to evaluate it at x = 0:

0 2n—2

o2 (An—2
. sin(x“)  cosx X 1 1
1 bt IS § ) — _§ " —_40==
im ( = 2 ) m ( ) 2+ ) ,,_2( ) ! 2 + 5

x—0

Further Insights and Challenges
t

1+12

1 1
(a) Show that/ gt)ydt = — — 3 In 2.
0

4
(b) Show that g(r) =1 —t — 12 + 13 — 1+ —
(c) EValuateSzl_%—%+Z—§_6_7+

SOLUTION

(a)
1 1 1 1 1
/g(t)dtz tan_lt—fln(tz—l—l)) —tan ' 1—-m2="_ "2
0 2 0 2 4 2

(b) Start with the Taylor series for %H:

1 oo
=Y
1+1¢ v
and substitute 2 for 7 to get

4

Z( 't 211: —t

+t =+ ...

H—t2
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so that
¢ o0
— =N =B T
7=
141 =0
Finally,
t
g(t)=H—ﬂ—m=1—z—t2+t3+t4—t5—t6+t7+...
(c) We have
1 1 1 1 1
Ndt= | (0=t =243+ —pP - Ndt=t— -2 —-BP+-r*+-r—5—...+C
/g() /( Tt ) M ML S +

The radius of convergence of the series for g(¢) is 1, so the radius of convergence of this series is also 1. However, this
series converges at the right endpoint, t = 1, since

(-D-G-3G-)-

is an alternating series with general term decreasing to zero. Thus by part (a),

In Exercises 86 and 87, we investigate the convergence of the binomial series

o0 a 0
T, (x) = Z <n>x

n=0

87. By Exercise 86, T, (x) converges for |x| < 1, but we do not yet know whether T, (x) = (1 4+ x)%.

(a) Verify the identity
a n) " n . n+1

(b) Use (a) to show that y = Ty (x) satisfies the differential equation (1 + x)y’ = ay with initial condition y(0) = 1.

T,
(¢) Prove that T, (x) = (1 + x)“ for |x| < 1 by showing that the derivative of the ratio % is zero.
X
SOLUTION
(a)
a a _ aa@—1)---(a—n+1) a@a—1)---(a—n+1)(a—n)
n<n>+(n+l)<n+1>_n. p +@m+1)- ZES
_a(a—l)---(a—n+l)+a(a—l)-~-(a—n+1)(a—n)
N (n— 1! n!
_a@—1)--(@a—-n+Dn+(@—n) a
- n! - n
(b) Differentiating 7, (x) term-by-term yields
s a
T)(x) = Zn( " )x"fl.
n=1
Thus,
s a i a ad a e a
@t =3 (5 )+ (5 ) =Toen (4 ) Ta( )
n=1 n=1 n=0 n=0
o0 a o0
:Z[(n+l)<n+l>+n<n)]x":a2< )x":aTa(x).
n=0 n=0
Moreover,



n2

CHAPTER 10 1|

INFINITE SERIES

(©)
g( Ta(x) )_ 1+ T4 —a( + 0" Ta) _ (40T —ala@) _
dx \(1+x)*) (1 + x)2a - (1 + x)a+l =Y
Thus,
Ta(x) _
(I+x)* 7
for some constant C. For x = 0,
Lo 1 _ _
W_ ] =1,s0C=1.

Finally, T, (x) = (1 + x)4.

89. Assume that @ < b and let L be the arc length (circumference) of the ellipse (;i)2 + (%)2 = 1 shown in Figure 5.

There is no explicit formula for L, but it is known that L = 4bG (k), with G (k) as in Exercise 88 and k = /1 — a2/b2.
Use the first three terms of the expansion of Exercise 88 to estimate L whena =4 and b = 5.

y
b

FIGURE 5 The ellipse (g)z + (%)2 =1

= = 5
y 2

and the arc length of the ellipse (%)2 + (g) =1is

3
L=20G6(2)=20[Z -
5 2
Using the first three terms in the series for G (k) gives

L~ 10m — 10 1\? (3/5)2+ 1-3\2 (3/5* Con (1220 243 \ 36,157 o e
A GE N 1 2.4 O 100 40,000) =~ 4000 o7

91. Irrationality of e Prove that e is an irrational number using the following argument by contradiction. Suppose that
e = M/N, where M, N are nonzero integers.

SOLUTION Witha =4andb =5,

oS

2
X (1:3-2n—1) 2(%),1
Z( 2.4 (2n) >2n—1

n=1

(a) Show that M! e~ ! is a whole number.

(b) Use the power series for ¢* at x = —1 to show that there is an integer B such that M! e~! equals
1 1
B+(—1)M+1< - +>
M+1 M+ 1DHM+2)

(¢) Use your knowledge of alternating series with decreasing terms to conclude that 0 < |M! e~! — B| < 1 and observe
that this contradicts (a). Hence, e is not equal to M /N.

SOLUTION Suppose that e = M /N, where M, N are nonzero integers.
(a) Withe = M/N,

N
Mle ! = Mios =M= DN,

which is a whole number.
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(b) Substituting x = —1 into the Maclaurin series for e* and multiplying the resulting series by M! yields
M = m 1_1+l_i+...+(_1)k+...
o= 2 3 k! '

M!
Forallk < M, T is a whole number, so

is an integer. Denote this integer by B. Thus,

_1\M+1 _1\M+2
M!e—1=B+M!<( D ) +--~):B+(—1)M+1< ! ! )

M+D! " (M+2)! M1l MihM+2 T

(¢) The series for M! e~ ! obtained in part (b) is an alternating series with a, = ’Z’—,' Using the error bound for an
alternating series and noting that B = Sj;, we have

1

— < 1.
M+1

’M!e_l —B’ <apy41 =

This inequality implies that M! e~! — B is not a whole number; however, B is a whole number so M!e~! cannot be a
whole number. We get a contradiction to the result in part (a), which proves that the original assumption that e is a rational
number is false.

CHAPTER REVIEW EXERCISES

n— .
1. Leta, = and b, = a,43. Calculate the first three terms in each sequence.

n!
(@) a? () by
(¢) anby d) 2a,11 — 3an
SOLUTION
(a)

a=(33) =o
(b)
by =ay 4;!3—%;
b2=as=5;3=$;
SRS

(c) Using the formula for a, and the values in (b) we obtain:

1-3 1 1
aiby; = ==
n 24T 12
L _2-3 1 _ 1
B72= T 0 T T 1200
3-3 1
azby = ——o.

31240
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(a)

1
203—3a2=2~0—3<—§)=7'

1
dag—3a3 =2 — —3-0= —.
4 — 543 24 12

In Exercises 3-8, compute the limit (or state that it does not exist) assuming that lim a, = 2.
n—o0
: 2
3. lim (5a, — 2a,;,)
n—>oo
SOLUTION

2
lim (Sa,, —2a5) =5 lim a, —2 lim a2 =5 lim a, —2( lim a,) =5.2-2.22=2.
n—00 n— 00 n—00 n— 00 n— 00

5. lim e%
n— o0
SOLUTION The function f(x) = e* is continuous, hence:

lim % = elMnsoodn — o2,
n—oo

7. lim (=1)"ay,
n—0oo
SOLUTION Because lim aj # 0, it follows that lim (—1)"a; does not exist.
n—>0oo n—oo

In Exercises 9-22, determine the limit of the sequence or show that the sequence diverges.

9. ap =~n+5—~n+2

SOLUTION First rewrite a, as follows:

(Vn+5—-Vn+2) (Vn+5+vn+2) (n+5—-n+2) 3
= 5+ Vn+2 =«/n+5+x/n+2=x/n+5+\/n+2'
Thus,
lim a, = lim ;:O
n—>00 n=00 \/n+54+/n+2
11. ap = 2/7

SOLUTION The function f(x) = 2% is continuous, so

lim @, = lim 21/ = limisoo(l/n®) _ 90 _
n—oo ' n—oo ’

13. by =1+ (=)™

SOLUTION Because 1 4+ (—1)"" is equal to O for m odd and is equal to 2 for m even, the sequence {b,;, } does not approach
one limit; hence this sequence diverges.

2
15. by = tan~! <i)
n+5

SOLUTION The function tan™lx is continuous, so

2 2
lim b, = lim tan~! <i> —tan"! ( lim nt ) —tan" 1= E.
n— 00 n— 00 n+5 n—oon+5 4

17. by =vVn?2 +n—-vn?2+1
SOLUTION Rewrite b, as
<\/n2+n—\/n2+l)(\/n2—|—n+\/n2—|—1) (n2+n)—(n2—|—l> n—1

by = =

Vn?2+n+vn?+1 Va1 Va2l
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Then

1
= lim - 1-0 L

1
n . —
w21 noo 1 T JVI+0+/1+0 2
o+ + J+ie e

n

lim b, = lim
n—oo n—o0 \/ﬁ_’_

n2 n
1 3m
19. by, = <1 + —)
m
m
SOLUTION lim b, = lim (l + —) =e.
m—00 m—00 m

21. b, = n(ln(n +1)— lnn)
SOLUTION Write

Using L’Hopital’s Rule, we find

in(1+1)

1 1
n X xz

lim b, = lim
n—o0 n—o0

2
t.
23. Use the Squeeze Theorem to show that l_i)mOo w =
n

Jn

SOLUTION For all x,

b4
—— <arctanx < —,
2 2
SO
/2 arctan(nz) /2

N RN
for all n. Because
i T/2\ i 7'[/2_0
-5 U _anmﬁ_ ’

it follows by the Squeeze Theorem that

. arctan(nz)
Iim —— =0
n— 00 ﬁ
. dn4l |
25. Calculate lim , where a, = =3" — =2".
n—oo qy 2 3
SOLUTION Because
n
2 3 72 3 6
and
3}1
lim — = o0,
n—»oo 6

we conclude that lim;,— o0 @, = 00, so L’Hopital’s rule may be used:

2 n+1
. nt1 ' %3n+1 _ %2n+1 ) 3n+2 _ on+2 ) 3-2 <§ 3-0
lim —— = lim o = m ——— = lim = =3.
n—o0 aqy n— 00 23” _ j2n n—oo 3n+1 _ pn+l n—00 - (;>n+l 1—-0
3
-2
27. Calculate the partial sums S4 and S7 of the series .
n +2n
n=1
SOLUTION
S4 = 1-f—O—i— ! + 2 _ 1 0.183333;
4T3 15 24~ 60 ’
1 1 2 3 4 5 287
S7=—4+0+—+—+—=+—+ = =——=0.065079.

3 1524735 487 63 4410

15
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8 16 32

4
29. Find th 2.8, 16 52
indthesum g+ o+t g1 T ozt

SOLUTION This is a geometric series with common ratio r = % Therefore,

4,8 16 32 5 4
9 27 81 243 _1_%_'

o 2n+3
31. Find the sum Z TR

n=-—1

SOLUTION Note

therefore,

o o0 o
33. Give an example of divergent series Z a, and Z by, such that Z(an +by) = 1.

n=1 n=1 n=1
SOLUTION Leta, = (%)n + 1, by = —1. The corresponding series diverge by the Divergence Test; however,
i(a +b )—§<1>n— 2 =1
n=1 ! n_n=1 2 _1_%_.
= 1
35. Evaluate S = r; m

SOLUTION Note that

1 11 1
nn+3) 3\n n+3

so that
nn+3) 3 n n+3
n=3 n=3
IRV N 11 N 11
“3\\3 6 4 7 5 8
1 1+ N 1 1 +1 1
6 9 N—1 N+2 N N+3
1 1+1+1 1 1 1
“3\3 4 5 N+1 N+2 N+3
Thus
* 1. X 1
272, lim Z - -
nn+3) 3N->x n n+3
n=3 n=3

1 1+1+1 1 1 1 1 1+1+1_47
" 3\3 45 N+1 N+2 N+3) 3\3 4 5/ 180
In Exercises 37—40, use the Integral Test to determine whether the infinite series converges.
0 2
n
37. —_
Z n3+1
n=1
2
SOLUTION Let f(x) = xf—_i_l This function is continuous and positive for x > 1. Because

@+ DY) —x2G6x2)  x(2—xY)
- @3 +1)2 G

f'(x)
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we see that f'(x) < Oand f is decreasing on the interval x > 2. Therefore, the Integral Test applies on the interval x > 2

Now,
o0 X2 R X2 1
/ Y dx= lim dx =~ lim (1n(R3+1)—1n9)=oo
 x34+1 R0y x3+1 3 R—>oo
00 2 00 2

diverges, as does the series
® nZ 3+1

The integral diverges; hence, the series
g g ,,X; o

s 1

- 2 (n+2)(In(n +2))3

Using the substitution # = In(x + 2), so that du = —— dx, we have

_ 1
SOLUTION Let f(x) = GG

00 o 1 o 1 1 |R
/ f(x)dx:/ —du = lim —du= lim |——

0 n2 u3 R—00 JIn2 u3 R—oo \ 2u?ljo

. ( 1 1 ) 1
= lim — =
R—oo \2(In2)2  2(In R)? 2(In2)2

Since the integral of f(x) converges, so does the series
In Exercises 4148, use the Comparison or Limit Comparison Test to determine whether the infinite series converges.

=
ay
2
1 n+1
SOLUTION Foralln > 1,
1 1 1 1
0< < — —_— < —.
n+1 n n+1)2 2
oo o0
1 1 .
The series Z ) is a convergent p-series, so the series Z T)Z converges by the Comparison Test.
n=1
o0 2
n“+1
43.
Z n35_2
n=2
SOLUTION ~ Apply the Limit Comparison Test with a, = <5 5‘" 12 and by, = % Now,
n’+1 35, 15
35_ X n> +n
L= lim ——= = lim =1.
n— 00 + n—oo p3.5_2
ol

1

o
Because L exists and Z ] is a convergent p-series, we conclude by the Limit Comparison Test that the series

n?+1
——=—— also converges.
35 _

452\/ﬁ

SOLUTION Foralln > 2,
n n 1
—— <5 = 375
S5 n2 nd2

oo
1
The series Z is a convergent p-series, so the series Z converges by the Comparison Test.
1372 \/ﬁ
n= 2

00 10 410"
47. Z
nll 4117
Apply the Limit Comparison Test with a, = 219" and p, = (19)" Th
SOLUTION pply the Limit Comparison Test with a, = P and by, = (17 ) - Then,
10 1
n'0410 2104107 210
.a T . i . 1t 1
L = lim il =1 i ot S +1£l" = 711101 = lim 10"
n—00 by, n—oo 10 n—oo ntl4117 n'
s 117 117
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oo n
The series Z (ﬁ) is a convergent geometric series; because L exists, we may therefore conclude by the Limit
n=1

e¢]

10 n
. . n' + 10
Comparison Test that the series E
n=1

———— also converges.
nll 4 117

2" +n
32

(e.¢]
49. Determine the convergence of Z using the Limit Comparison Test with b, = (%)n
n=1

- _ 2"4n
SOLUTION With g, = Sity. We have

1 n
_ap Mpn 3 6" 4n3" , 1+"<§)
L= lim — = lim c—=lim ——— = lim —— =1
n—0o0 by, n—oo 31 -2 Jn n—o00 G — 2n+1 n—o00 1-2 (l)”
3
o0 n
Since L = 1, the two series either both converge or both diverge. Since Z (§> is a convergent geometric series, the
n=1
2" 4n
Limit Comparison Test tells us that Z ——— also converges.
3n—2
n=1
o0
51 Letay =1 — /1 — ;. Show that lim ay = 0 and that ) _ ay diverges. Hint: Show thatay > 5.
n=1
SOLUTION
1 1 1_1 n—1_Jn—+vn—-1_ n—m-—1) _ 1
n n vn n(n+vn—1)  p4n2-n
1 1
zZ = =5
n 4+ A /n2 2n
= 1 T
The series Z n diverges, so the series ZZOZZ (1 —4/1— %) also diverges by the Comparison Test.
n=2
i n
53. Let S = — .
r; (n? +1)?

(a) Show that S converges.
(b) £A'S  UseEq. (4) in Exercise 83 of Section 10.3 with M = 99 to approximate S. What is the maximum size of the
error?

SOLUTION

(a) Forn > 1,
n n 1

(n2 + 1)2 < (n2)2 = ,,T3

o0 o0

The series Z = is a convergent p-series, so the series Z (ZHTDZ also converges by the Comparison Test.
: n
n=1 n=1
(b) Witha, = (nz"T)z, fx) = (xzﬁ and M = 99, Eq. (4) in Exercise 83 of Section 10.3 becomes
99 o 100 o

ZL'F/ LdszsZLnL/ — = dx,
2 +12 " Jioo (x2 +1)2 = @2+ 1D2 0 100 (2 + 12

n=1

or
99 0
n X 100
0<S-— 7+/ — x|
Z:l n2+1?  Jioo 2+ 1)2 (1002 + 1)2
Now,
99 n
Y ——— =0.397066274; and
bt (n? + 1)?

oo x R X 1 1 1
f ——  _dx = lim — =  _dx=- lim <— + )
100 (x2 +1)2 R—o00 J100 (x2 + 1)2 2R-oc0\ RZ+1 1002+1

1
= —— = 0.000049995;
20002
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thus,
S 2~ 0.397066274 + 0.000049995 = 0.397116269.

The bound on the error in this approximation is

100
— _—9998x 107",
(1002 + 1)2

In Exercises 54-57, determine whether the series converges absolutely. If it does not, determine whether it converges
conditionally.

=n"
3. Z nl i + 1)

o]

1
SOLUTION Consider the corresponding positive series ————— . Because
1 1
-
nllinm+1)  all

o0 o
1 =n"
and —— is a convergent p-series, we can conclude by the Comparison Test that ——— also converges.
nX_:lnll gent p- Y p 2:1 g+ 1) g
o0 _ 1 )n
Thus, Z ————— converges absolutely.

111n(n+1)

& + 27tn)
Z os

SOLUTION  COs (% + 27n) = cos ¥=

n=1 \/7[ 2 n=1 "
cos ( + 27tn) .
This is a divergent p-series, so the series Z ————— = diverges.
NG
n=1
o~ (=D
59. Catalan’s constant is defined by K = Z —_— .
= Ck+ 1)2

(a) How many terms of the series are needed to calculate K with an error of less than 10799

(b) £A5S Carry out the calculation.

SOLUTION Using the error bound for an alternating series, we have

1 1
Sy — K| < = .
=K G T T av 12

For accuracy to three decimal places, we must choose N so that

1

NI 5% 1073 or (2N +3)% > 2000.

Solving for N yields
1
N> (\/2000 - 3) ~20.9.
Thus,

21 (—1)k
K~ Z — = 0.915707728.
= Ck+ 1)2
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o
61. Let Z ap be an absolutely convergent series. Determine whether the following series are convergent or divergent:

n=1

o 1
@ Y <an + —2>
n=1 n

(b) > (—=1)"ay

n=1
1 i": lan|
© Y — (d)
n=1 1 +aj n=1 "
o0 o0 [o/0]

SOLUTION Because Z ay converges absolutely, we know that Z ay converges and that Z lay| converges.

n=1 n=1 n=1
o o0
(a) Because we know that Z ay converges and the series Z - is a convergent p-series, the sum of these two series,
n=1 n=1
> 1
Z (an + —) also converges.
n2
n=1
(b) We have,

o0 o0
Dol an] =) lanl
n=lI n=1

o o0 o
Because Z |an | converges, it follows that Z (—=1)"ay, converges absolutely, which implies that Z (—=1)"ay, converges.

n=1 n=1 n=1
oo
(¢) Because Z ap converges, limy— oc ap = 0. Therefore,
n=1
li ! 1#0
im =—— = ,
n—0o0 1 4 a% 1+ 02
0
and the series Z 3 diverges by the Divergence Test.
n=1 an
oo oo
||

d) k%‘ < |an| and the series Z lan| converges, so the series Z

n=1

also converges by the Comparison Test.
n
n=1

In Exercises 63-70, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.
5
n
63. > o
n=1
. nd
SOLUTION VWitha, = 57

@ppr| _ (4D S0 1 TN
5 n)’

an 5n+1 n5
and
5
1 1 1 1
p= lim |2 — 2 gim (14-) =2 1=-.
n—oo| a, 5 n—o0 n 5 5

Because p < 1, the series converges by the Ratio Test.

1
65. _
PRSI

: =1
SOLUTION Witha, = POYE
n 3 n2" 1+ﬁ 142
angr| n2" +n _ 2" _1 n T
= 1 3 2\ T2 EPENCEEIEN
an | 4+ D2 L (1) (n+1)2n+1<1+";j+13) 2ontl gyt
and
1 1
o= lim a"i"'l =—.1-1=—-.
n—oo an 2 2

Because p < 1, the series converges by the Ratio Test.
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00 Ap2
67.

n=1

n!

. 2,,2
SOLUTION With g, = =

Hn+1)? ) 92n+1 _
B T B e

ap+1
an

Ap+1
an

Because p > 1, the series diverges by the Ratio Test.
X a1
69. (7) —
Z 2/ n!
n=1

SOLUTION With a, = ()" ni,

Anp n+1\"t1 1 2\" L1\ 1 . n
= . — n!= - = — — s
an 2 n+ 1! n 2 n 2 n
and
1
p = lim dntl = —e.
n—>oo | ap 2

Because p = % > 1, the series diverges by the Ratio Test.

m

In Exercises 71-74, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

00
1
71. —
4n

n=1

1

SOLUTION With ap, = 77,

T
LGgmoo an_nll)moo qn 4

Because L < 1, the series converges by the Root Test.
00 3\
73. —
> ()
n=1

n
SOLUTION With g, = (%) s

L= lim Ya, = lim 3n—l’ 3—0
_nl)mooJcTn_ im — ] = lim — =0.

n— 00 4n
Because L < 1, the series converges by the Root Test.

In Exercises 75-92, determine convergence or divergence using any method covered in the text.
00 n
2
75. =
> (3)
n=1
SOLUTION This is a geometric series with ratio r = % < 1; hence, the series converges.

o
LA
n=1

SOLUTION This is a geometric series with common ratio r = e()% ~ 0.98 < 1; hence, the series converges.

o o
e

SOLUTION In this alternating series, a;, = —_1___ The sequence {ay) is decreasin , and

n=1

lim a, = 0;
n—oo

therefore the series converges by the Leibniz Test.
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[e¢]

(=n"
81. 2; —

n=

SOLUTION The sequence a,, = ﬁ is decreasing for n > 10 and
lim a, =0;
n—oo
therefore, the series converges by the Leibniz Test.

o
1
83. _—
’12::1 na/n+1nn

SOLUTION Forn > 1,

1 1 1

<

nvn+Inn ~ nyn - n3/2°

o o0
1
The series ——= is a convergent p-series, so the series ————— converges by the Comparison Test.
712::1’13/2 gentp nX::ln\/n—}—lnn & Y P
o
1 1
85. — =
2 ()
SOLUTION This series telescopes:
> /1 1 1 1 1 1 1
Z — = =(l1-—=)+|l—=—=)+|—=——)+...
= Jrnooon+1 V2 V2 3 V3 /4

so that the n'® partial sum S}, is

w=(-5) (55 (G (Gae) - as

and then
i( ! ! > lim §, 1 li ! 1
JRE—— = lim = — 1um =
= JnoooJn+1 n—o0 " n—00 /n + 1
S |
87.
nZ:l n+./n

SoLUTION Forn > 1, /n < n, so that

DL 3
2 —_—
n=1n+ﬁ n=12n

o
which diverges since it is a constant multiple of the harmonic series. Thus Z

1
nzln—l—\/ﬁ

diverges as well, by the Comparison

Test.
> 1
89. Z plnn
n=2

SOLUTION For n > N large enough, Inn > 2 so that

1
n2

32
IA

S

Inn
n=N n

Me L0J8

1
——— also converges; adding back in the terms for

which is a convergent p-series. Thus by the Comparison Test, T
n

n=N

n < N does not affect convergence.
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s b4
)
91. sin“ —
> sin’
n=1

SOLUTION Forall x > 0, sinx < x. Therefore, sin® x < x2, and for x = %

b4 1
Sl[l2 — < - = 7'[2 -

n n

00 00
. . . . .2 .
The series Z —isa convergent p-series, so the series Z sin“ — also converges by the Comparison Test.
n n

n=1 n=1

In Exercises 93-98, find the interval of convergence of the power series.

- 2" x"

SOLUTION Witha, = =,
2n+1xn+l n!
(n+ DI 2nxn

ap+1
an

2
=0

n

p = lim

= lim
n—>oo

X -

m
n—o0

Then p < 1 for all x, so that the radius of convergence is R = 00, and the series converges for all x.

o0 I16
95. — (= 3)"
rg nd+1

6 n
SOLUTION With a, = %
b= lim |%tL| = (n+ D0 =3 ¥4
n—oo| ay n—00 n+0D8—1 no(x — 3)"

. (n+ 10w + 1)
= lim |{(x-3) ——————
n—00 no(n+ D8 +1)
— lim | —3)- n'% + terms of lower degree — -3
n— 00 nl4 4+ terms of lower degree

Then p < 1 when |x — 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |x — 3| < 1, or

00 6
n
2 < x < 4. For the endpoint x = 4, the series becomes Z IR which converges by the Comparison Test comparing
s +
1 = nO(—1)"
with the convergent p-series Z —- For the endpoint x = 2, the series becomes Z — which converges by the
n=1 n=0 n®+1

e¢]

6/, 3\
Leibniz Test. The series Z w
n=0

therefore converges for 2 < x < 4.
n8 41

x
97. Z(nx)”
n=0

SOLUTION With a;, = n"x", and assuming x # 0,

(n+ 1)n+1xn+l

nnxn

ap+1
dn

= lim
n—>oo

p=im,

e (1)

n n
since ("#) = (1 + %) converges to e and the (n + 1) term diverges to co. Thus p < 1 only when x = 0, so the
series converges only for x = 0.

= lim
n—oo

99. Expand f(x) = as a power series centered at c = 0. Determine the values of x for which the series converges.

4 —3x
SOLUTION Write




724 CHAPTER 10 |

INFINITE SERIES
Sub@tltutlng g x for x in the Maclaurin series for 7 1 , we obtain
()
=y (3
1- 1 =0 4

This series converges for ‘%x’ < 1,or|x| < %. Hence, for |x| < %,

wman (i)

o x2k

101. Let F(x) =Y L
k=0

(a) Show that F(x) has infinite radius of convergence.

(b) Show that y = F(x) is a solution of
Yi=xy'+y,  yO) =1, Y(0)=0

(¢) £A'S  Plot the partial sums Sy for N = 1,3, 5, 7 on the same set of axes.

SOLUTION
. 2k

(@) Withax = 55—,

arq1| |x|2k+2 2k k! _ x2

ag | 2L k+ 1) |x12F T 2(k+1)°
and

o= lim | —x2.0=0
k—oo | aj

Because p < 1 for all x, we conclude that the series converges for all x; that is, R = oo.
(b) Let

0 2k

X
)’:F(X):];ﬂ-

Then

y/: iszZk—l _ i x2k—1
2k k! P k=1 — 1’

and

o0
X
xy +y—x22k l(k +1§)M:22k l(k 1 +szk'

i (2k + 1)x2k _ i (2k + 1)x2k _ i (2k — 1)x2k=2 _

2k 2k ‘ 2k=1(k — 1)

Moreover,

0 02k , 00 02](—1
0)=1+ —— =1 and 0) = e —t
YO 1; 2k y O ]; =Tk~ 1)!

2k
Thus, Z —— is the solution to the equation y” = xy’ + y satisfying y(0) = 1, y'(0) = 0.
k= O
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(¢) The partial sums S;, S3, S5 and Sy are plotted in the figure below.

y

N W R Loy

In Exercises 103—112, find the Taylor series centered at c.

103. f(x)=¢*, ¢=0

SOLUTION Substituting 4x for x in the Maclaurin series for ¥ yields

105. f(x) =x* c¢=2
SOLUTION We have
@) =4 f/x)=12x> f"x)=24x fPx)=24
and all higher derivatives are zero, so that
f)=2=16 f @) =4-22=32 /@) =12-22=48 f"02)=24.-2=48 fH©2)=2
Thus the Taylor series centered at ¢ = 2 is
4

e 32 48 48 24
Zf ’()(x—z)"=16+—’(x—2)+—(x—2)2+—(x—2)3+—(x—2)4
~ 1l 21 3! 41

=164+32(x —2)+24(x =22 +8(x = 2> + (x — 2)*

107. f(x) =sinx, c=m

SOLUTION We have

FO )y =sinx fATD @) =cosx fAD () = —sinx  FATID(x) = — cosx

so that

Ay =sing =0 f@tD )y =cost =—1 fFO*D )= —sinr =0 £ (7)) = —cosw =1

Then the Taylor series centered at ¢ = 7 is

= f™ ()
(x

-1 1 -1 1
n_ ‘o e N3 NS SN
- —m)" = T (x 71)+3!(x )’ + 5 (x —m) —|—7!(x )

n=0

S L et L s C SRR
= X —TT 6xJT lzoxﬂ' 504OX7T

109. f(x) =

, ¢c=—2
1—2x

SOLUTION Write

1 1 1 1
I-2x  5-26+2) S51-2x+2)

Substituting %(x + 2) for x in the Maclaurin series for ﬁ yields

1 >, on
—s =) @+
1—%(x+2) ,12:(:)5"

125
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hence,
1 1 o= 2" 0 e 2" 0
1—2x252057(x+2) :Z()W(x+2)'
n=| n=

1. f(x)=In % c=2

SOLUTION Write

lnizln w —In 1_’_& )
2 2 2

Substituting % for x in the Maclaurin series for In(1 + x) yields

S ()

n
n=1 n=1

. _ i D)™ -2
n-2"
This series is valid for |[x — 2| < 2.
In Exercises 113116, find the first three terms of the Maclaurin series of f(x) and use it to calculate f (&) (0).
113. f(x) = (x2 - x)e)‘2

SOLUTION  Substitute x2 for x in the Maclaurin series for ¢* to get

1 1
ex2:1+x2+§x4+6x6+...

so that the Maclaurin series for f(x) is

—_

2 3

2 1
—x)e* =x2—|—x4+§x6+---—x—x -y

(x R = NEPL NI

—Xx
2
The coefficient of x3 is

f///(o) _
3

-1

so that f”/(0) = —6.
1

115. = —
Fx) 1+ tanx

SOLUTION Substitute — tan x in the Maclaurin series for ﬁ to get

1

2 3
— =1—tanx + (tanx)“ — (tanx)” + ...
1 +tanx ( ) ( )

We have not yet encountered the Maclaurin series for tan x. We need only the terms up through x3, s0 compute
tan’ (x) = sec? x tan” (x) = 2(tan x) sec? x tan”’ (x) = 2(1 + tan? X) sec? x + 4(tan2 x) sec? x
so that
tan’(0) =1 tan”(0) =0 tan”’(0) =2

Then the Maclaurin series for tan x is

tan’ (0 tan” (0 tan”’ (0 1
an’ (0) an()x2+an ()x3+-~-:x+fx3+...

tanx = tan 0 + T X o 3 3

Substitute these into the series above to get

2 3
! 1 i) (et i i) 4
— =1—(x+zx X+ -x —(x+=x
1+tanx 3 3 3
L3, 2 3. ..
=1—x—§x + x“ — x” + higher degree terms

2 43
=1—-x4+x"— gx + higher degree terms
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The coefficient of x3 is

1o _ 4
33
so that
4
f///(()) - 6.-—_8
3
W7, Caleulate & — Ty T
Pl g T o T s T T
SOLUTION We recognize that
P 7'[3 N 71,5 7T7 N B i( ])n (n/2)2n+1
2 2331 2551 277! = 2n + 1!
is the Maclaurin series for sin x with x replaced by /2. Therefore,
b 7T3 7'[5 7T7 o T -1
PR ST R 2 TR

121




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice


