.

Calculus: An Applied Approach 8th edition

Textbook Cover

Ron Larson
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

Try an Example Assignment


Terms of Use

Access is contingent on use of this textbook in the instructor's classroom.

Student Pricing

Academic Term Homework Homework and eBook eBook Upgrade
Semester $47.00 $75.00 $35.00
Quarter $47.00 $75.00 $35.00
High School $38.75 $61.75 $28.75

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

Table of Contents

  • Chapter 0: A Precalculus Review
    • 0.1: The Real Number Line and Order (25)
    • 0.2: Absolute Value and Distance on the Real Number Line (26)
    • 0.3: Exponents and Radicals (24)
    • 0.4: Factoring Polynomials (25)
    • 0.5: Fractions and Rationalization (25)

  • Chapter 1: Functions, Graphs, and Limits
    • 1.1: The Cartesian Plane and the Distance Formula (26)
    • 1.2: Graphs of Equations (24)
    • 1.3: Lines in the Plane and Slope (24)
    • 1.4: Functions (25)
    • 1.5: Limits (25)
    • 1.6: Continuity (24)

  • Chapter 2: Differentiation
    • 2.1: The Derivative and the Slope of a Graph (24)
    • 2.2: Some Rules for Differentiation (23)
    • 2.3: Rates of Change: Velocity and Marginals (27)
    • 2.4: The Product and Quotient Rules (24)
    • 2.5: The Chain Rule (25)
    • 2.6: Higher-Order Derivatives (25)
    • 2.7: Implicit Differentiation (26)
    • 2.8: Related Rates (25)

  • Chapter 3: Applications of the Derivative
    • 3.1: Increasing and Decreasing Functions (25)
    • 3.2: Extrema and the First-Derivative Test (26)
    • 3.3: Concavity and the Second-Derivative Test (25)
    • 3.4: Optimization Problems (23)
    • 3.5: Business and Economics Applications (25)
    • 3.6: Asymptotes (25)
    • 3.7: Curve Sketching: A Summary (25)
    • 3.8: Differentials and Marginal Analysis (19)

  • Chapter 4: Exponential and Logarithmic Functions
    • 4.1: Exponential Functions (16)
    • 4.2: Natural Exponential Functions (22)
    • 4.3: Derivatives of Exponential Functions (21)
    • 4.4: Logarithmic Functions (40)
    • 4.5: Derivatives of Logarithmic Functions (34)
    • 4.6: Exponential Growth and Decay (21)

  • Chapter 5: Integration and Its Applications
    • 5.1: Antiderivatives and Indefinite Integrals (32)
    • 5.2: Integration by Substitution and the General Power Rule (25)
    • 5.3: Exponential and Logarithmic Integrals (25)
    • 5.4: Area and the Fundamental Theorem of Calculus (40)
    • 5.5: The Area of a Region Bounded by Two Graphs (23)
    • 5.6: The Definite Integral as the Limit of a Sum (17)

  • Chapter 6: Techniques of Integration
    • 6.1: Integration by Parts and Present Value (32)
    • 6.2: Partial Fractions and Logistic Growth (25)
    • 6.3: Integration Tables (26)
    • 6.4: Numerical Integration (22)
    • 6.5: Improper Integrals (21)

  • Chapter 7: Functions of Several Variables
    • 7.1: The Three-Dimensional Coordinate System (24)
    • 7.2: Surfaces in Space (25)
    • 7.3: Functions of Several Variables (22)
    • 7.4: Partial Derivatives (28)
    • 7.5: Extrema of Functions of Two Variables (22)
    • 7.6: Lagrange Multipliers (22)
    • 7.7: Least Squares Regression Analysis (22)
    • 7.8: Double Integrals and Area in a Plane (23)
    • 7.9: Applications of Double Integrals (16)

  • Chapter 8: Trigonometric Functions
    • 8.1: Radian Measure of Angles (24)
    • 8.2: The Trigonometric Functions (30)
    • 8.3: Graphs of Trigonometric Functions (34)
    • 8.4: Derivatives of Trigonometric Functions (35)
    • 8.5: Integrals of Trigonometric Functions (27)

  • Chapter 9: Probability and Calculus
    • 9.1: Discrete Probability (19)
    • 9.2: Continuous Random Variables (17)
    • 9.3: Expected Value and Variance (22)

  • Chapter 10: Series and Taylor Polynomials
    • 10.1: Sequences (32)
    • 10.2: Series and Convergence (29)
    • 10.3: p-Series and the Ratio Test (27)
    • 10.4: Power Series and Taylor's Theorem (24)
    • 10.5: Taylor Polynomials (16)
    • 10.6: Newton's Method (21)

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key

SBS
Step by Step Question
MI
Master It


Question Availability Color Key

BLACK questions are available now
GREY questions are under development


Group Quantity Questions
Chapter 0: A Precalculus Review
0.1 25 002 004 006 008 010 011.MI 011.MI.SA 012 014 015.MI 015.MI.SA 016 018 020.MI 020.MI.SA 022 024 026 028.SBS 030 032 034 036 037 038
0.2 26 002 004 006 008.MI 008.MI.SA 010 012.MI 012.MI.SA 014 016 018 020 022 024 026.SBS 028 030 036.MI 036.MI.SA 038 040 042 044 046 048 050
0.3 24 002 004 006 010 012 014 016 020 022 024 026.SBS 030 032 036 038 042 046.MI 046.MI.SA 048 050 054 056 057.MI 057.MI.SA
0.4 25 002.MI 002.MI.SA 004 006 010 014 016 022 028 032 034 036.MI 036.MI.SA 038 042 046 050 054 058 062 068.SBS 070 074 076 078
0.5 25 002 004 006.MI 006.MI.SA 008 010 014 018 020 022 024 026 028 030.MI 030.MI.SA 032 034 036.SBS 038.MI 038.MI.SA 040 042 044 046 048
Chapter 1: Functions, Graphs, and Limits
1.1 26 003 004 006 007 008 011 012 018 020 021.SBS 022 023 024.MI 024.MI.SA 025.MI 025.MI.SA 026 029 030 031 032 033 034 041 042.MI 042.MI.SA
1.2 24 001 003.MI 003.MI.SA 006 010 011.MI 011.MI.SA 013 017 019 022 024 037 041 042 043 048.SBS 056 060 064 066 068 070 076
1.3 24 002 004 008 014 020 024 027.MI 027.MI.SA 029.SBS 031 035 037 039 041 043 052 056 063 065 068 072 078 082 092
1.4 25 002 006 007 009 014 020 022 026.MI 026.MI.SA 032 036 038 039 046 050.SBS 054 058 060 062 064 066.MI 066.MI.SA 067 072 074
1.5 25 002 006 010 014.MI 014.MI.SA 018 022 024 026 030 034 038 042 044.SBS 046.MI 046.MI.SA 048 050 052 054 058 060 062 066 070
1.6 24 002 004.MI 004.MI.SA 006 010 014 016 018 020 022 026 028.MI 028.MI.SA 034 036 040 044 048 052.SBS 056 060 062 064 066
Chapter 2: Differentiation
2.1 24 006 008 010 012 014 016.MI 016.MI.SA 020 024 026 030 032.SBS 034 038 040 042 046 052 056 060 064 066 068 072
2.2 23 002 004 006 008 012 016 020 024.SBS 028 030 032 034 036 038 040 044 048 052 056.MI 056.MI.SA 060 062 066
2.3 27 003 004 006.SBS 008 010 012 014 016.MI 016.MI.SA 017 018 020 022 024 026.MI 026.MI.SA 028 030.MI 030.MI.SA 032 034 036 038 042 044 046 048
2.4 24 001 004 006 008.MI 008.MI.SA 012 016 018 020.SBS 022 026 030 034 038 042 046 047 056 058 060.MI 060.MI.SA 066 070 072
2.5 25 004 006 010 014.MI 014.MI.SA 016 020 024 028.MI 028.MI.SA 032 036 040 042 044 052 056 060 066.SBS 068 070 072 074.MI 074.MI.SA 076
2.6 25 002 006 008 010.MI 010.MI.SA 012 016 018 020 022 024.MI 024.MI.SA 026 028 030 032 034 036.MI 036.MI.SA 038 040 044 046 050 052
2.7 26 002 004 006.MI 006.MI.SA 008 010 012 014 016 018.MI 018.MI.SA 020 022.SBS 024 026 028 030 032 034 036 038 040 042 044 046.MI 046.MI.SA
2.8 25 001 002 003 004 005.MI 005.MI.SA 006 009 012 013 014 015 016 017 018.SBS 019 020.MI 020.MI.SA 021 022 023 024 025.MI 025.MI.SA 026
Chapter 3: Applications of the Derivative
3.1 25 002.MI 002.MI.SA 004 006 008 010 012 014 016 018.MI 018.MI.SA 020 022 024 026.SBS 028 030 032 034 036 038 040 042.MI 042.MI.SA 043
3.2 26 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 022 024.MI 024.MI.SA 026 028 030.SBS 034 036 038 040 042 044 048.MI 048.MI.SA 050 052
3.3 25 002.MI 002.MI.SA 006 010 014 018 022 024 028 032 036 040 044 048 050 058 060 062 064 066.SBS 068 070 074.MI 074.MI.SA 078
3.4 23 001.MI 001.MI.SA 004 006 007 009 012 014 016 018 020 022 024.SBS 026 028 030 032 034 036 038 040 042 043
3.5 25 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 020.MI 020.MI.SA 021 022 024 026 028 030 032 034 036 038.MI 038.MI.SA 040 042.SBS
3.6 25 002 004.MI 004.MI.SA 008 010 012 014 018 020 022 024 026.SBS 028 030 032 036 040.MI 040.MI.SA 044 048 056 060 064 066 068
3.7 25 002 004 006.MI 006.MI.SA 008 012 014.SBS 016 018.MI 018.MI.SA 020 022 024 026 028 030 032 034 036 038 040 042 044 056 058
3.8 19 002 004 006.MI 006.MI.SA 010 014.MI 014.MI.SA 016 020 022 026.SBS 028.MI 028.MI.SA 030 034 036 038 040 042
Chapter 4: Exponential and Logarithmic Functions
4.1 16 002 004 006 008 010 012.MI 012.MI.SA 014.MI 014.MI.SA 018 022 026 030 032 036.MI 036.MI.SA
4.2 22 002 006 008 012.MI 012.MI.SA 016 020 024 026 028 030 032.MI 032.MI.SA 034.SBS 036 038 040 042 044.MI 044.MI.SA 046 050
4.3 21 002 004.MI 004.MI.SA 006 008 010 012 016 018 022 026 030 034 038 040.MI 040.MI.SA 044 046 048 050 052
4.4 40 002 004 006.MI 006.MI.SA 008 010 012 014 016 018 024.MI 024.MI.SA 026 028 030 032 034 038 040 042 044 046 050 052.MI 052.MI.SA 054 056 060 064 068 070 074 076 078 080 082 084 086 088 092
4.5 34 002.MI 002.MI.SA 004 006 008 012 014 016 018.SBS 022 024 026 028 032 036 040 042 044 046 048 052 054.MI 054.MI.SA 056 060 064 068 070 072 076 080 082 084 088
4.6 21 002 004.MI 004.MI.SA 006 008 010 012 016 018.MI 018.MI.SA 024 026 028 030 032 034.SBS 040 042 044 048 050
Chapter 5: Integration and Its Applications
5.1 32 010 012.MI 012.MI.SA 014 016 018 020 022 024 026 028 030 032 034 036 038.MI 038.MI.SA 046 050 052 054 058.SBS 060 062 064 066 068 070.MI 070.MI.SA 074 076 078
5.2 25 002 004 006 008 010 012 014.MI 014.MI.SA 016 018 020.SBS 022.MI 022.MI.SA 024 026 028 036 040 044 048 050 052.MI 052.MI.SA 056 058
5.3 25 002.MI 002.MI.SA 004 006 008 010 012 014 018 020 022.MI 022.MI.SA 024.SBS 026 028 030 032 034 036 038 050 056 058 060 062
5.4 40 002 004 006 008 010 012 016 018.MI 018.MI.SA 020 022 024 026 028 030 032.MI 032.MI.SA 034 036 038 040 042.SBS 044 046 048 052 056 058 062 064 066 070 074 080.MI 080.MI.SA 084 088 092 094 096
5.5 23 002 004 006.SBS 008 010 012 014 020 027 028 030 036 038 040 042.MI 042.MI.SA 044 046 048 050.MI 050.MI.SA 054 056
5.6 17 002.MI 002.MI.SA 006 008.MI 008.MI.SA 010 012 014 016.SBS 024 028 030.MI 030.MI.SA 032 034 036 038
Chapter 6: Techniques of Integration
6.1 32 002 004 006 008 010 012.MI 012.MI.SA 014 016 018 020 022 024 026 028 032.SBS 034 040 042 044 046 048 050 058 060 066 068 070.MI 070.MI.SA 072 074 076
6.2 25 002 004.SBS 008 010 012 016.MI 016.MI.SA 018 020 022 026 030 032 034 036 040 042 046.MI 046.MI.SA 048 054 055.MI 055.MI.SA 058 060
6.3 26 002 004.MI 004.MI.SA 006 008 010.SBS 014.MI 014.MI.SA 016 018 022 024 026 032 034 038 042 046 048 050 052 054 056 060.MI 060.MI.SA 061
6.4 22 002.MI 002.MI.SA 006 008 010 013 014 018 022 024 026.SBS 027 028 030 036 038 040 042.MI 042.MI.SA 044 046 052
6.5 21 002 004 006 010 012 014.MI 014.MI.SA 016 018 022 028 030 032 034 036 044 046.SBS 048 050.MI 050.MI.SA 052
Chapter 7: Functions of Several Variables
7.1 24 008 009 010 014 016 018.SBS 020.MI 020.MI.SA 022 024 026 028 030 032 034 036 038 040 042.MI 042.MI.SA 044 046 060 061
7.2 25 014 016.SBS 018 020 022.MI 022.MI.SA 024 026 028 030 031 038 040.MI 040.MI.SA 042 044 046 048 050 052 054.MI 054.MI.SA 055 059 060
7.3 22 002 004 006 008.MI 008.MI.SA 010 012 014 016 018 020 022 024.MI 024.MI.SA 026 028.MI 028.MI.SA 030 042.SBS 044 046 050
7.4 28 002.MI 002.MI.SA 004 006 008 010 012 014 016.MI 016.MI.SA 020 022 024 026 028 030.MI 030.MI.SA 034 038 040.SBS 042 048 056 058 060 062 064 068
7.5 22 002 004 006.MI 006.MI.SA 008 010 012 014 022 024.MI 024.MI.SA 026 028 030 032 034 038.SBS 040 044 046 050.MI 050.MI.SA
7.6 22 002.SBS 006.MI 006.MI.SA 008 010.MI 010.MI.SA 014 018 020 024 025 026.MI 026.MI.SA 030 032 034 036 042 044 046 048 050
7.7 22 002.SBS 006 010.MI 010.MI.SA 012 014 016 018 020 022 024 028 030.MI 030.MI.SA 032 036 040 042 046 048.MI 048.MI.SA 050
7.8 23 002 004.MI 004.MI.SA 006.SBS 008 010 012 014 016 018 020.MI 020.MI.SA 022 026 034.MI 034.MI.SA 036 037 038 040 042 044 048
7.9 16 002.MI 002.MI.SA 010 016 018.SBS 020.MI 020.MI.SA 022 024 026 028 030 032 034 036 038
Chapter 8: Trigonometric Functions
8.1 24 002 004 006 008 010.MI 010.MI.SA 012 014 018 020 022 024 026 028 032 036 044.MI 044.MI.SA 048.SBS 050.MI 050.MI.SA 052 054 056
8.2 30 002 008 014 016 018 020 022 024 026 027 032 034 036 038 040 042 044 046 048 050.MI 050.MI.SA 052 054 064 066 068 072.SBS 074.MI 074.MI.SA 076
8.3 34 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 020.MI 020.MI.SA 021 028 030 032 034 036 038 040 044 046 048 056 058 062.SBS 065 070 072 074 076 080 084 086
8.4 35 002 004 006 008 010.MI 010.MI.SA 012 014 016 018 020 022 024 026 028 030 032 034 038 040.MI 040.MI.SA 042.SBS 044 046 048.MI 048.MI.SA 054 056 060 064 066 068 074 080 084
8.5 27 002 006 008.SBS 010.MI 010.MI.SA 012 014 018 020 022 024 030 034 036 040 042 044 046 048 052 054 056 058 060.MI 060.MI.SA 064 068
Chapter 9: Probability and Calculus
9.1 19 002 006.MI 006.MI.SA 008 010 012.MI 012.MI.SA 014 016 020 022 028 030 032.MI 032.MI.SA 034.SBS 036 038 040
9.2 17 002 004 006 012 016.SBS 018 020.MI 020.MI.SA 022 024 028 030.MI 030.MI.SA 032 034 036 038
9.3 22 002.SBS 003 008 012 014.MI 014.MI.SA 016 018 020 022 024 026 028 030 032.MI 032.MI.SA 034 036 042 044 048 050
Chapter 10: Series and Taylor Polynomials
10.1 32 002.MI 002.MI.SA 004 006 008 010 012 014.MI 014.MI.SA 016 018 020 022 024 026 028 030 034.SBS 036 040 050 054 060 062 064 066 068 070 072 074 076.MI 076.MI.SA
10.2 29 002 006.MI 006.MI.SA 008 010 014.SBS 016 018 022.MI 022.MI.SA 024 026 028 034 036 038 042 044 046 052 054 056 060 062.MI 062.MI.SA 064 066 068 070
10.3 27 004 006 008 010.SBS 016.MI 016.MI.SA 020 022 024 026 028 030.MI 030.MI.SA 032 034 035 041 048 052 054 056 058 060.MI 060.MI.SA 062 064 066
10.4 24 002 004 006.SBS 010.MI 010.MI.SA 012.MI 012.MI.SA 014 016 020 022 026 028 030 034 036 038 040 044.MI 044.MI.SA 046 048 054 056
10.5 16 004 006 012 014 016 018 019 024.SBS 026.MI 026.MI.SA 028 032.MI 032.MI.SA 034.MI 034.MI.SA 036
10.6 21 002.SBS 004 008 010 012 014 016 018 020 022 024 026 028 030 032.MI 032.MI.SA 038 044 046 048.MI 048.MI.SA
Total 1668  

WebAssign® is a registered service mark of North Carolina State University under license to Advanced Instructional Systems, Inc.

Copyright Information © 1997–2003 North Carolina State University. Portions © 2003– Advanced Instructional Systems, Inc.

Various trademarks held by their respective owners.

Main Office: 1791 Varsity Drive, Suite 200, Raleigh, NC 27606 | Tel (919) 829-8181 | Fax (919) 829-1516