# Calculus: An Applied Approach International Edition 9th edition

Ron Larson
Publisher: Cengage Learning

## eBook

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: Functions, Graphs, and Limits
• 1.1: The Cartesian Plane and the Distance Formula (26)
• 1.2: Graphs of Equations (24)
• 1.3: Lines in the Plane and Slope (26)
• 1.4: Functions (25)
• 1.5: Limits (27)
• 1.6: Continuity (24)
• 1: Review Exercises
• 1: Test Yourself

• Chapter 2: Differentiation
• 2.1: The Derivative and the Slope of a Graph (26)
• 2.2: Some Rules for Differentiation (22)
• 2.3: Rates of Change: Velocity and Marginals (28)
• 2.4: The Product and Quotient Rules (24)
• 2.5: The Chain Rule (26)
• 2.6: Higher-Order Derivatives (26)
• 2.7: Implicit Differentiation (26)
• 2.8: Related Rates (27)
• 2: Review Exercises
• 2: Test Yourself

• Chapter 3: Applications of the Derivative
• 3.1: Increasing and Decreasing Functions (26)
• 3.2: Extrema and the First-Derivative Test (26)
• 3.3: Concavity and the Second-Derivative Test (25)
• 3.4: Optimization Problems (25)
• 3.5: Business and Economics Applications (25)
• 3.6: Asymptotes (25)
• 3.7: Curve Sketching: A Summary (27)
• 3.8: Differentials and Marginal Analysis (19)
• 3: Review Exercises
• 3: Test Yourself

• Chapter 4: Exponential and Logarithmic Functions
• 4.1: Exponential Functions (16)
• 4.2: Natural Exponential Functions (22)
• 4.3: Derivatives of Exponential Functions (22)
• 4.4: Logarithmic Functions (41)
• 4.5: Derivatives of Logarithmic Functions (35)
• 4.6: Exponential Growth and Decay (21)
• 4: Review Exercises
• 4: Test Yourself

• Chapter 5: Integration and Its Applications
• 5.1: Antiderivatives and Indefinite Integrals (30)
• 5.2: Integration by Substitution and The General Power Rule (27)
• 5.3: Exponential and Logarithmic Integrals (26)
• 5.4: Area and the Fundamental Theorem of Calculus (37)
• 5.5: The Area of the Region Bounded by Two Graphs (24)
• 5.6: The Definite Integral as the Limit of a Sum (17)
• 5: Review Exercises
• 5: Test Yourself

• Chapter 6: Techniques of Integration
• 6.1: Integration by Parts and Present Value (33)
• 6.2: Integration Tables (22)
• 6.3: Numerical Integration (22)
• 6.4: Improper Integrals (19)
• 6: Review Exercises
• 6: Test Yourself

• Chapter 7: Functions of Several Variables
• 7.1: The Three-Dimensional Coordinate System (24)
• 7.2: Surfaces in Space (25)
• 7.3: Functions of Several Variables (22)
• 7.4: Partial Derivatives (30)
• 7.5: Extrema of Functions of Two Variables (23)
• 7.6: Lagrange Multipliers (21)
• 7.7: Least Squares Regression Analysis (22)
• 7.8: Double Integrals and Area in the Plane (23)
• 7.9: Applications of Double Integrals (17)
• 7: Review Exercises
• 7: Test Yourself

• Chapter 8: Trigonometric Functions
• 8.1: Radian Measure of Angles (24)
• 8.2: The Trigonometric Functions (35)
• 8.3: Graphs of Trigonometric Functions (34)
• 8.4: Derivatives of Trigonometric Functions (35)
• 8.5: Integrals of Trigonometric Functions (29)
• 8: Review Exercises
• 8: Test Yourself

• Chapter 9: Probability and Calculus
• 9.1: Discrete Probability (19)
• 9.2: Continuous Random Variables (17)
• 9.3: Expected Value and Variance (22)
• 9: Review Exercises
• 9: Test Yourself

• Chapter 10: Series and Taylor Polynomials
• 10.1: Sequences (32)
• 10.2: Series and Convergences (29)
• 10.3: p-Series and the Ratio Test (28)
• 10.4: Power Series and Taylor's Theorem (24)
• 10.5: Taylor Polynomials (16)
• 10.6: Newton's Method (21)
• 10: Review Exercises
• 10: Test Yourself

• Chapter 11: Differential Equations
• 11.1: Solutions of Differential Equations
• 11.2: Separation of Variables
• 11.3: First-Order Linear Differential Equations
• 11.4: Applications of Differential Equations
• 11: Review Exercises
• 11: Test Yourself

• Chapter A: Appendix A
• A.1: The Real Number Line and Order (25)
• A.2: Absolute Value and Distance on the Real Number Line (26)
• A.3: Exponents and Radicals (24)
• A.4: Factoring Polynomials (24)
• A.5: Fractions and Rationalization (19)

• Chapter B: Appendix B
• B.1: Alternate Introduction to the Fundamental Theorem of Calculus

• Chapter C: Appendix C
• C.1: Differentiation and Integration Formulas
• C.2: Formulas from Business and Finance

• Chapter D: Appendix D
• D.1: Review of Algebra, Geometry, and Trigonometry
• D.2: Units of Measurements

• Chapter E: Appendix E
• E.1: Graphing Utility Programs

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter A: Appendix A
A.1 25 002 004 006 008 010 011.MI 011.MI.SA 012 014 015.MI 015.MI.SA 016 018 020.MI 020.MI.SA 022 024 026 028.SBS 030 032 034 035 037 038
A.2 26 002 004 006 008.MI 008.MI.SA 010 012.MI 012.MI.SA 014 016 018 020 022 024 026.SBS 028 030 036.MI 036.MI.SA 038 040 041 043 044 046 048
A.3 24 002 004 006 010 012 014 016 020 022 024 026.SBS 030 032 036 038 042 046.MI 046.MI.SA 048 050 054 056 057.MI 057.MI.SA
A.4 24 002.MI 002.MI.SA 004 006 010 014 018 022 028 032 034 036.MI 036.MI.SA 038 042 046 050 054 058 062 068.SBS 070 074 076
A.5 19 006 013.MI 013.MI.SA 018 020 022 024 026 028 030.MI 030.MI.SA 032 034 036.SBS 038.MI 038.MI.SA 040 042 044
Chapter 1: Functions, Graphs, and Limits
1.1 26 003 006 007 008 010 011 012 018 020 021.SBS 022 023 024.MI 024.MI.SA 038.MI 038.MI.SA 040 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
1.2 24 002 004 008 014 023.MI 023.MI.SA 025 029 031 046 048 052 054 058 066 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP 506.XP 507.XP.SBS 508.XP
1.3 26 002 006 009.MI 009.MI.SA 011 015 024 026 030.MI 030.MI.SA 034 042 044 056 058 063 065 067 069 075 077 080 084 501.XP.MI 501.XP.MI.SA 502.XP
1.4 25 002 004 007 012 014 017 022 026 030.MI 030.MI.SA 036 038 039 048 054.SBS 058 062 064 066 071.MI 071.MI.SA 072 075 501.XP 502.XP
1.5 27 004 006.MI 006.MI.SA 008 022.MI 022.MI.SA 026 030 032 039.MI 039.MI.SA 040.MI 040.MI.SA 042 046 052 054 064 066 070 074 501.XP 503.XP 504.XP 505.XP 506.XP 507.XP
1.6 24 002 004 006.MI 006.MI.SA 008 012 016 020 022 029 030.MI 030.MI.SA 034 040 044 046 050 052 056.SBS 061 063 069 501.XP 502.XP
Chapter 2: Differentiation
2.1 26 008 010 012 016 020.MI 020.MI.SA 026 028 032 036 040 042 044 046 054 057 062 066 072 501.XP 502.XP.MI 502.XP.MI.SA 503.XP.MI 503.XP.MI.SA 505.XP 506.XP
2.2 22 006 012 018 026.SBS 028 042 048 052 054 056 058 060 064.MI 064.MI.SA 077 080 501.XP 502.XP 504.XP 505.XP 506.XP 507.XP
2.3 28 003 004 006 008 010 012.MI 012.MI.SA 014 016.MI 016.MI.SA 017 019 020 024.MI 024.MI.SA 026 028.MI 028.MI.SA 030 032 034 037 042 044 501.XP 502.XP 503.XP 504.XP
2.4 24 002 005 010.MI 010.MI.SA 016 024.MI 024.MI.SA 026 032 034 036 038 046 053 062 064.MI 064.MI.SA 072 074 501.XP 502.XP 503.XP 504.XP 505.XP
2.5 26 004 008.MI 008.MI.SA 012 020 022.MI 022.MI.SA 024 028 030 038 040 048 052 053 062.MI 062.MI.SA 066 068 070 073 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA
2.6 26 002.MI 002.MI.SA 006 008 014 016 022 024.MI 024.MI.SA 027 028 030 032 036 038 501.XP 503.XP.MI 503.XP.MI.SA 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP 510.XP
2.7 26 004 006.MI 006.MI.SA 008 009 010 016 018.MI 018.MI.SA 023.SBS 024.MI 024.MI.SA 028 034 036 040 042 044 046 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA
2.8 27 001 002 003 004 005.MI 005.MI.SA 008 009 012 013 016.MI 016.MI.SA 017.SBS 019.MI 019.MI.SA 020 021.MI 021.MI.SA 022 023 024 025.MI 025.MI.SA 501.XP 502.XP 503.XP 504.XP
Chapter 3: Applications of the Derivative
3.1 26 002 012 014.MI 014.MI.SA 016 020 021 022 024.SBS 026 028.MI 028.MI.SA 030 032 034 038 040 041 044 047.MI 047.MI.SA 048 501.XP.MI 501.XP.MI.SA 502.XP 503.XP
3.2 26 002 004.MI 004.MI.SA 005 006 008 012 014 016 022 024.MI 024.MI.SA 026 027 028.SBS 036 038 040 042 048 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP
3.3 25 004 007.MI 007.MI.SA 010 014 019 026 030 032 038 040 046 048 050 058 060 064.SBS 066 070.MI 070.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP
3.4 25 001 003 012 015 016.MI 016.MI.SA 018 020.MI 020.MI.SA 022 028 032 033 035 037 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
3.5 25 002 004.MI 004.MI.SA 006 008 011 014 018 020 021 022.MI 022.MI.SA 024 026 028 030 036 041.SBS 501.XP 502.XP 503.XP 504.XP 505.XP.MI 505.XP.MI.SA 506.XP
3.6 25 002 008 018 034 036 038 050 056 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP.SBS 507.XP 508.XP 509.XP 510.XP.MI 510.XP.MI.SA 511.XP 512.XP 513.XP 514.XP 515.XP
3.7 27 002 004.MI 004.MI.SA 006.MI 006.MI.SA 008 010.SBS 013.MI 013.MI.SA 015 016 020 022 026 030 031 032 033 034 046 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 506.XP 507.XP 508.XP
3.8 19 008 012 014 018 022.MI 022.MI.SA 025 028 030 037.MI 037.MI.SA 038 501.XP 502.XP.MI 502.XP.MI.SA 503.XP.SBS 504.XP 505.XP 506.XP
Chapter 4: Exponential and Logarithmic Functions
4.1 16 002 004 006.MI 006.MI.SA 008 010 018 024.MI 024.MI.SA 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP 506.XP
4.2 22 002 006 008 012.MI 012.MI.SA 022 026 028 030 032.MI 032.MI.SA 034 036.SBS 038 042 044.MI 044.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP
4.3 22 004 006 008 010.MI 010.MI.SA 016 022 026 028 032 038 040.MI 040.MI.SA 042 047 050 052 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
4.4 41 002 004 006.MI 006.MI.SA 008 010 012 014 016 018 020.MI 020.MI.SA 022 024 026 028 032 034 040.MI 040.MI.SA 044 048 050 052.MI 052.MI.SA 054.MI 054.MI.SA 058 060 062 068 070 076 080 082 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
4.5 35 004 006 008 010 014 018.MI 018.MI.SA 022 032 034 036 038 040 044 052 054 056.MI 056.MI.SA 060 064 074 076 078 083 501.XP.MI 501.XP.MI.SA 502.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
4.6 21 002.MI 002.MI.SA 004 006 008 010 014 016 018.MI 018.MI.SA 026 028 030 032 034.SBS 038 045 501.XP 502.XP 503.XP 504.XP
Chapter 5: Integration and Its Applications
5.1 30 008 010 016.MI 016.MI.SA 018 020 024 028 030 032 034.MI 034.MI.SA 040 048 050 052 054 056 058 062.MI 062.MI.SA 065 068 501.XP 502.XP 503.XP 506.XP 507.XP 508.XP.SBS 509.XP
5.2 27 002 004 006 008 010.MI 010.MI.SA 012 014.MI 014.MI.SA 020 024 028 031.MI 031.MI.SA 032 034.MI 034.MI.SA 038 040 046 048 050 052.MI 052.MI.SA 058 501.XP 503.XP
5.3 26 002.MI 002.MI.SA 004.MI 004.MI.SA 008 011 014 020 022.MI 022.MI.SA 024 026.SBS 028 030 032 040 050 052 501.XP 502.XP 503.XP 505.XP 506.XP 507.XP 508.XP 509.XP
5.4 37 002 006 010 012 016.MI 016.MI.SA 018 020 022 026.SBS 032 033 036 038 042 044 046 048.MI 048.MI.SA 050 060 068 074 076 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 509.XP 510.XP 511.XP 512.XP 513.XP
5.5 24 002 004 008.MI 008.MI.SA 010 012 014 018 026 027 030 036 038 040 042.MI 042.MI.SA 046 050.MI 050.MI.SA 053 501.XP 505.XP 506.XP 507.XP
5.6 17 002.MI 002.MI.SA 014 027 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP.SBS 506.XP 507.XP 508.XP.MI 508.XP.MI.SA 509.XP 510.XP 511.XP
Chapter 6: Techniques of Integration
6.1 33 002 004 006 007 008 010 014 016 018.MI 018.MI.SA 020 022 028 030 032.MI 032.MI.SA 034 040 041 050 052 064 066 068.MI 068.MI.SA 070 072 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
6.2 22 002.MI 002.MI.SA 004 006 008 012.SBS 014.MI 014.MI.SA 016 018 022 024 026 034 036 040 042 046 050 056 061.MI 061.MI.SA
6.3 22 002.MI 002.MI.SA 004 008 010 018 020 022 023 024 028 032.MI 032.MI.SA 036 038.MI 038.MI.SA 040 042 501.XP 502.XP 503.XP 504.XP
6.4 19 002 004 008 010.MI 010.MI.SA 014.MI 014.MI.SA 018 029 032.SBS 034 036.MI 036.MI.SA 040 501.XP 502.XP 503.XP 504.XP 505.XP
Chapter 7: Functions of Several Variables
7.1 24 006 007 008 012 014 016.MI 016.MI.SA 018.SBS 020 022 024 026 028 030 032 034 036 038 040.MI 040.MI.SA 042 044 057 501.XP
7.2 25 014.MI 014.MI.SA 016 018 020 022 023 036.MI 036.MI.SA 038 040 042 044 046 048 049 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP 508.XP
7.3 22 002 004 006.MI 006.MI.SA 008.MI 008.MI.SA 010 012 014 018 020 034 044.SBS 046 501.XP 502.XP 503.XP.MI 503.XP.MI.SA 505.XP.MI 505.XP.MI.SA 506.XP 507.XP
7.4 30 002 004.MI 004.MI.SA 006 008 010 012 014 016 018 020 022 036 038 040 042.MI 042.MI.SA 044 054 060 062 064 069.MI 069.MI.SA 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 505.XP
7.5 23 002 004 006.MI 006.MI.SA 008 010.MI 010.MI.SA 012 014 020 024.MI 024.MI.SA 026 028 030 032 036 038.SBS 040 044 048.MI 048.MI.SA 501.XP
7.6 21 004.MI 004.MI.SA 010.MI 010.MI.SA 012 014 018 021.MI 021.MI.SA 024 026 029 031 034 038 040 041 501.XP.SBS 502.XP 503.XP 505.XP
7.7 22 008 009.MI 009.MI.SA 010 012 014 018 022 024 026.MI 026.MI.SA 028 501.XP.SBS 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP
7.8 23 003 008 010 012 014 018 020.MI 020.MI.SA 021 022.MI 022.MI.SA 026 029 032 036 038 048 501.XP.MI 501.XP.MI.SA 503.XP.MI 503.XP.MI.SA 504.XP 505.XP
7.9 17 002.MI 002.MI.SA 010 014.MI 014.MI.SA 020 022 024 026 028 030 032 036 501.XP 502.XP.MI 502.XP.MI.SA 503.XP
Chapter 8: Trigonometric Functions
8.1 24 003 005 008 010 012.MI 012.MI.SA 014 016 020 022 024 026 034 042.MI 042.MI.SA 046.SBS 049.MI 049.MI.SA 051 054 056 501.XP 502.XP 503.XP
8.2 35 002 008 010 012 014 016 018 021 022 023 027 031 032 039 040 041 042 044 046 052 055.MI 055.MI.SA 056.MI 056.MI.SA 059 062 072.SBS 082 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA
8.3 34 002.MI 002.MI.SA 004 006 008 010 012 014 016 018 020.MI 020.MI.SA 021 028 030 032 034 036 042 044 048 050 052 060 065 070 076 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP 507.XP
8.4 35 010 018.MI 018.MI.SA 024 026 028 030 032 034 036 040 042.MI 042.MI.SA 044.SBS 046 048 050.MI 050.MI.SA 052 054 060 062 072 082 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP
8.5 29 004.SBS 006.MI 006.MI.SA 008 010 016 020.MI 020.MI.SA 022.MI 022.MI.SA 026 028 032 040 042 044 046 048 052 058 068 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP
Chapter 9: Probability and Calculus
9.1 19 002 007 010 012 016 018 026 028 030.MI 030.MI.SA 032.SBS 036 038 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 504.XP
9.2 17 002 004 009 012.SBS 014 016.MI 016.MI.SA 018 020 024 027 035 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
9.3 22 002.SBS 003 014 016 018 022 024 026 028 030 032 034 038.MI 038.MI.SA 040 041 045 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
Chapter 10: Series and Taylor Polynomials
10.1 32 002.MI 002.MI.SA 004 006 008 010 012 014 015 016.MI 016.MI.SA 018 020 022 024 026 028 032.SBS 034 038 048 052 058 060 062 064 501.XP 502.XP 503.XP 504.XP 505.XP.MI 505.XP.MI.SA
10.2 29 006 010.MI 010.MI.SA 012 014 020 024.MI 024.MI.SA 029 036 040 044 046 048 056 058 060 064 065.MI 065.MI.SA 066 068 070 501.XP.SBS 502.XP 503.XP 504.XP 505.XP 506.XP
10.3 28 004 006 010.SBS 016.MI 016.MI.SA 020.MI 020.MI.SA 022 024 026 028 030.MI 030.MI.SA 032 038 041 048 052 054 056 058 062 064 501.XP 502.XP 503.XP.MI 503.XP.MI.SA 504.XP
10.4 24 006.SBS 010.MI 010.MI.SA 012.MI 012.MI.SA 014 016 020 022 026 030 036 038 040 044.MI 044.MI.SA 046 048 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
10.5 16 002 006 008 014 016 018 019 026.MI 026.MI.SA 028.MI 028.MI.SA 030.MI 030.MI.SA 032 501.XP.SBS 502.XP
10.6 21 002.SBS 004 011 018 020 022 024 027 030 032.MI 032.MI.SA 044 046 048.MI 048.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
Chapter 11: Differential Equations
11 0
Total 1659