# Elementary Linear Algebra 6th edition

Ron Larson, Bruce H. Edwards, and David C. Falvo
Publisher: Cengage Learning

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: Systems Of Linear Equations
• 1.1: Introduction to Systems of Linear Equations (16)
• 1.2: Gaussian Elimination and Gauss-Jordan Elimination (16)
• 1.3: Applications of Systems of Linear Equations (6)

• Chapter 2: Matrices
• 2.1: Operations with Matrices (17)
• 2.2: Properties of Matrix Operations (14)
• 2.3: The Inverse of a Matrix (13)
• 2.4: Elementary Matrices (18)
• 2.5: Applications of Matrix Operations (13)

• Chapter 3: Determinants
• 3.1: The Determinant of a Matrix (15)
• 3.2: Evaluation of a Determinant Using Elementary Operations (12)
• 3.3: Properties of Determinants (18)
• 3.4: Introduction to Eigenvalues (10)
• 3.5: Applications of Determinants (20)

• Chapter 4: Vector Spaces
• 4.1: Vectors in Rn (17)
• 4.2: Vector Spaces (12)
• 4.3: Subspaces of Vector Spaces (14)
• 4.4: Spanning Sets and Linear Independence (18)
• 4.5: Basis and Dimension (22)
• 4.6: Rank of a Matrix and Systems of Linear Equations (14)
• 4.7: Coordinates and Change of Basis (12)
• 4.8: Applications of Vector Spaces (13)

• Chapter 5: Inner Product Spaces
• 5.1: Length and Dot Product in Rn (24)
• 5.2: Inner Product Spaces (18)
• 5.3: Orthonormal Bases: Gram-Schmidt Process (13)
• 5.4: Mathematical Models and Least Squares Analysis (13)
• 5.5: Applications of Inner Product Spaces (16)

• Chapter 6: Linear Transformations
• 6.1: Introduction to Linear Transformations (9)
• 6.2: The Kernel and Range of a Linear Transformation (10)
• 6.3: Matrices for Linear Transformations (12)
• 6.4: Transition Matrices and Similarity (7)
• 6.5: Applications of Linear Transformations (17)

• Chapter 7: Eigenvalues And Eigenvectors
• 7.1: Eigenvalues and Eigenvectors (12)
• 7.2: Diagonalization (11)
• 7.3: Symmetric Matrices and Orthogonal Diagonalization (13)
• 7.4: Applications of Eigenvalues and Eigenvectors (15)

• Chapter 8: Complex Vector Spaces (online)*
• 8.1: Complex Numbers
• 8.2: Conjugates and Division of Complex Numbers
• 8.3: Polar Form and DeMoivre's Theorem
• 8.4: Complex Vector Spaces and Inner Products
• 8.5: Unitary and Hermitian Matrices

• Chapter 9: Linear Programming (online)*
• 9.1: Systems of Linear Inequalities
• 9.2: Linear Programming Involving Two Variables
• 9.3: The Simplex Method: Maximization
• 9.4: The Simplex Method: Minimization
• 9.5: The Simplex Method: Mixed Constraints

• Chapter 10: Numerical Methods (online)*
• 10.1: Gaussian Elimination with Partial Pivoting
• 10.2: Iterative Methods for Solving Linear Systems
• 10.3: Power Method for Approximating Eigenvalues
• 10.4: Applications of Numerical Methods

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
SBS - Step by Step Question

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Systems Of Linear Equations
1.1 16 005 007 011 017 021 029 031 037 045 053 057 061 071 079 085 091.SBS
1.2 16 001 003 007 009 013.SBS 015 021 025 029 035 039 043 047 051 053 059
1.3 6 003 009 011 013.SBS 021 025
Chapter 2: Matrices
2.1 17 003 007 009.SBS 011 013 019 021 027 031 039 043 045 051 063 065 071 073
2.2 14 001 003 007 013 014 021 023 027 033.SBS 037 039 043 057 059
2.3 13 003.SBS 005 009 015 019 025 031 033 037 039 041 043 057
2.4 18 001 005 011 014 015 017 021 023 025 029 037 041 043 045 049 053 055 058.SBS
2.5 13 001 003 007 011 015 021 023 025 027.SBS 033 035 041 043
Chapter 3: Determinants
3.1 15 001 005 013 015 019 027 031 037 041 043 052.SBS 053 057 061 067
3.2 12 001 003 007 017 021 022.SBS 024 025 031 037 041 051
3.3 18 001 005 008.SBS 009 011 013 017 021 023 027 031 035 039 043 047 063 067 071
3.4 10 001 003 005 008.SBS 011 014 015 017 021 024
3.5 20 001 007 017.SBS 025 028 031 033 036 037 042 043 047 049 052 055 059 062 068 070 073
Chapter 4: Vector Spaces
4.1 17 002 007 010 011 015 021.SBS 024 026 028 030 033 038 043 045 048 053 068
4.2 12 001 005 006 008 013 016 018 020 023 026 030 034.SBS
4.3 14 001 003 006 007 014 015 019 022.SBS 024 025 029 031 032 035
4.4 18 002 004 005 012 017 019 023 024.SBS 031 035 038 039 042 045 046 049 051 067
4.5 22 001 004 005 007 010 013 029 031 033 035 039 040 043 045 048 049 061.SBS 063 065 069 071 076
4.6 14 003 009 015.SBS 019 020 022 025 029 032 033 039 044 049 067
4.7 12 001 003 005 009 015.SBS 019 025 029 032 034 037 039
4.8 13 001 008 009 012.SBS 017 023 027 035 037 039 048 057 065
Chapter 5: Inner Product Spaces
5.1 24 005 006 007 011 015 019 025 028 029 032 034 038 042 043 051 065 068 077 082 088 090 101 105.SBS 109
5.2 18 001 006 008 011 014 019 023 039 043 045 047 051.SBS 055 057 060 065 068 073
5.3 13 004 011 017 023 025 027 033 039 045.SBS 051 056 061 069
5.4 13 002 003 006 011 013 015 017 019 022.SBS 029 035 037 042
5.5 16 003 007 015 017 023 025 028 029.SBS 031 034 036 038 039 055 058 068
Chapter 6: Linear Transformations
6.1 9 001 007 014 025 029 032 036.SBS 050 055
6.2 10 001 006 019 027.SBS 033 038 044 045 047 051
6.3 12 001 017 019 023 031 037 040 045 049 056.SBS 059 065
6.4 7 003 005 007 009 011 016.SBS 018
6.5 17 001 011 016 018 022 024.SBS 027 029 032 038 039 043 048 049 053 058 065
Chapter 7: Eigenvalues And Eigenvectors
7.1 12 001 006 013 017 025 029 037 045.SBS 058.SBS 065 069 074
7.2 11 001 005 013.SBS 018 020 021 023 025 031 036 041
7.3 13 003 004 007 010 011 012 017.SBS 018 023 025 027 028 031
7.4 15 001 003 005.SBS 007 009 013 017 021 023 029 036 037 041 046 052
Chapter 8: Complex Vector Spaces (online)*
8 0
Chapter 9: Linear Programming (online)*
9 0
Chapter 10: Numerical Methods (online)*
10 0
Total 500