# Introduction to Probability and Statistics (Metric Version) 15th edition

William Mendenhall, Robert J. Beaver, and Barabara M. Beaver
Publisher: Cengage Learning

## Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

• College Success Toolkit
• Math Mindset
• Mendenhall Introduction to Probability and Statistics (Metric) 15e with SALT - Updated March 2021

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: Describing Data With Graphs
• 1: Stats in Practice Video Question (1)
• 1: SALT Tutorial - Supporting Sections 1.2, 1.3, and 1.4
• 1.1: Variables and Data (22)
• 1.2: Graphs for Categorical Data (17)
• 1.3: Graphs for Quantitative Data (20)
• 1.4: Relative Frequency Histograms (31)
• 1: Chapter Review (41)
• 1: Select Your Scenario (beta) - Supporting Sections 1.2, 1.3, and 1.4
• 1: Multiple Choice Exercises (33)
• 1: JMP Simulations (9)
• 1: Concept Questions (26)
• 1: Labs (5)
• 1: Test Bank (110)

• Chapter 2: Describing Data With Numerical Measures
• 2: Stats in Practice Video Question (1)
• 2: SALT Tutorial - Supporting Section 2.4
• 2.1: Measures of Center (20)
• 2.2: Measures of Variability (13)
• 2.3: Understanding and Interpreting the Standard Deviation (29)
• 2.4: Measures of Relative Standing (27)
• 2: Chapter Review (37)
• 2: Select Your Scenario (beta) - Supporting Section 2.4
• 2: Multiple Choice Exercises (30)
• 2: JMP Simulations (11)
• 2: Concept Questions (25)
• 2: Labs (6)
• 2: Test Bank (317)

• Chapter 3: Describing Bivariate Data
• 3: Stats in Practice Video Question (1)
• 3: SALT Tutorial - Supporting Section 3.2
• 3.1: Describing Bivariate Categorical Data (16)
• 3.2: Describing Bivariate Quantitative Data (24)
• 3: Chapter Review (26)
• 3: Select Your Scenario (beta) - Supporting Section 3.2
• 3: Multiple Choice Exercises (13)
• 3: JMP Simulations (13)
• 3: Concept Questions (14)
• 3: Labs (6)
• 3: Test Bank (85)

• Chapter 4: Probability
• 4: Stats in Practice Video Question (1)
• 4.1: Events and the Sample Space (23)
• 4.2: Calculating Probabilities Using Simple Events (35)
• 4.3: Useful Counting Rules (29)
• 4.4: Rules for Calculating Probabilities (33)
• 4.5: Bayes' Rule (16)
• 4: Chapter Review (19)
• 4: Multiple Choice Exercises (15)
• 4: Concept Questions (36)
• 4: Labs (5)
• 4: Test Bank (7)

• Chapter 5: Discrete Probability Distributions
• 5: Stats in Practice Video Question (1)
• 5: SALT Tutorial - Supporting Section 5.2
• 5.1: Discrete Random Variables and Their Probability Distributions (33)
• 5.2: The Binomial Probability Distribution (51)
• 5.3: The Poisson Probability Distribution (22)
• 5.4: The Hypergeometric Probability Distribution (31)
• 5: Chapter Review (35)
• 5: Select Your Scenario (beta) - Supporting Section 5.2
• 5: Multiple Choice Exercises (19)
• 5: Concept Questions (20)
• 5: Labs (5)
• 5: Test Bank (30)

• Chapter 6: The Normal Probability Distribution
• 6: Stats in Practice Video Question
• 6: SALT Tutorial - Supporting Section 6.2
• 6.1: Probability Distributions for Continuous Random Variables (18)
• 6.2: The Normal Probability Distribution (63)
• 6.3: The Normal Approximation to the Binomial Probability Distribution (26)
• 6: Chapter Review (25)
• 6: Select Your Scenario (beta) - Supporting Section 6.2
• 6: Multiple Choice Exercises (59)
• 6: JMP Simulations (1)
• 6: Concept Questions (12)
• 6: Labs (5)
• 6: Test Bank (182)

• Chapter 7: Sampling Distributions
• 7: Stats in Practice Video Question (1)
• 7.1: Sampling Plans and Experimental Designs (24)
• 7.2: Statistics and Sampling Distributions (11)
• 7.3: The Central Limit Theorem and the Sample Mean (29)
• 7.4: Assessing Normality
• 7.5: The Sampling Distribution of the Sample Proportion (36)
• 7.6: A Sampling Application: Statistical Process Control (Optional) (14)
• 7: Chapter Review (21)
• 7: Multiple Choice Exercises (19)
• 7: Concept Questions (28)
• 7: Labs (6)
• 7: Test Bank (152)

• Chapter 8: Large-Sample Estimation
• 8: Stats in Practice Video Question (2)
• 8: SALT Tutorial - Supporting Sections 8.2, 8.3, 8.4, and 8.5 (1)
• 8.1: Where We've Been and Where We're Going
• 8.2: Point Estimation (32)
• 8.3: Interval Estimation (34)
• 8.4: Estimating the Difference between Two Population Means (19)
• 8.5: Estimating the Difference between Two Binomial Proportions (20)
• 8.6: One-Sided Confidence Bounds (18)
• 8.7: Choosing the Sample Size (15)
• 8: Chapter Review (24)
• 8: Select Your Scenario (beta) - Supporting Sections 8.2, 8.3, 8.4, and 8.5 (1)
• 8: Multiple Choice Exercises (19)
• 8: JMP Simulations (12)
• 8: Concept Questions (16)
• 8: Labs (12)
• 8: Test Bank (107)

• Chapter 9: Large-Sample Tests of Hypotheses
• 9: Stats in Practice Video Question (1)
• 9: SALT Tutorial - Supporting Sections 9.2, 9.4, and 9.5 (1)
• 9.1: A Statistical Test of Hypothesis (13)
• 9.2: A Large-Sample Test About a Population Mean (30)
• 9.3: A Large-Sample Test of Hypothesis for the Difference Between Two Population Means (21)
• 9.4: A Large-Sample Test of Hypothesis for a Binomial Proportion (16)
• 9.5: A Large-Sample Test of Hypothesis for the Difference Between Two Binomial Proportions (15)
• 9.6: Concluding Comments on Testing Hypotheses
• 9: Chapter Review (29)
• 9: Select Your Scenario (beta) - Supporting Sections 9.2, 9.4, and 9.5 (1)
• 9: Multiple Choice Exercises (37)
• 9: JMP Simulations (20)
• 9: Concept Questions (28)
• 9: Labs (24)
• 9: Test Bank (209)

• Chapter 10: Inference From Small Samples
• 10: Stats in Practice Video Question
• 10: SALT Tutorial - Supporting Sections 10.3 and 10.4 (1)
• 10.1: Student's t Distribution (14)
• 10.2: Small-Sample Inferences Concerning a Population Mean (31)
• 10.3: Small-Sample Inferences for the Difference Between Two Population Means: Independent Random Samples (24)
• 10.4: Small-Sample Inferences for the Difference Between Two Means: A Paired-Difference Test (21)
• 10.5: Inferences Concerning a Population Variance (16)
• 10.6: Comparing Two Population Variances (20)
• 10.7: Revisiting the Small-Sample Assumptions
• 10: Chapter Review (26)
• 10: Select Your Scenario (beta) - Supporting Sections 10.3 and 10.4 (1)
• 10: Multiple Choice Exercises (33)
• 10: JMP Simulations (11)
• 10: Concept Questions (12)
• 10: Labs (6)
• 10: Test Bank (139)

• Chapter 11: The Analysis of Variance
• 11: Stats in Practice Video Question (1)
• 11.1: The Design of an Experiment (14)
• 11.2: The Completely Randomized Design: A One-Way Classification (16)
• 11.3: Ranking Population Means (16)
• 11.4: The Randomized Block Design: A Two-Way Classification (23)
• 11.5: The ab Factorial Experiment: A Two-Way Classification (16)
• 11.6: Revisiting the Analysis of Variance Assumptions
• 11.7: A Brief Summary
• 11: Chapter Review (16)
• 11: Multiple Choice Exercises (39)
• 11: JMP Simulations (12)
• 11: Concept Questions (18)
• 11: Labs (9)
• 11: Test Bank (220)

• Chapter 12: Simple Linear Regression And Correlation
• 12: Stats in Practice Video Question (1)
• 12: SALT Tutorial - Supporting Sections 12.1, 12.3, 12.4, and 12.5
• 12.1: Simple Linear Regression (20)
• 12.2: An Analysis of Variance for Linear Regression (15)
• 12.3: Testing the Usefulness of the Linear Regression Model (16)
• 12.4: Diagnostic Tools for Checking the Regression Assumptions (7)
• 12.5: Estimation and Prediction Using the Fitted Line (17)
• 12.6: Correlation Analysis (16)
• 12: Chapter Review (18)
• 12: Select Your Scenario (beta) - Supporting Sections 12.1, 12.3, 12.4, and 12.5
• 12: Multiple Choice Exercises (42)
• 12: JMP Simulations (7)
• 12: Concept Questions (14)
• 12: Labs (6)
• 12: Test Bank (102)

• Chapter 13: Multiple Linear Regression Analysis
• 13: Stats in Practice Video Question (1)
• 13.1: The Multiple Regression Model
• 13.2: Multiple Regression Analysis (16)
• 13.3: A Polynomial Regression Model (14)
• 13.4: Using Quantitative and Qualitative Predictor Variables in a Regression Model (16)
• 13.5: Testing Sets of Regression Coefficients
• 13.6: Other Topics in Multiple Linear Regression
• 13.7: Steps to Follow When Building a Multiple Regression Model
• 13: Chapter Review (10)
• 13: Multiple Choice Exercises (51)
• 13: JMP Simulations (1)
• 13: Concept Questions (8)
• 13: Labs (5)
• 13: Test Bank (50)

• Chapter 14: Analysis of Categorical Data
• 14: Stats in Practice Video Question (1)
• 14.1: The Multinomial Experiment and the Chi-Square Statistic
• 14.2: Testing Specified Cell Probabilities: The Goodness-of-Fit Test (24)
• 14.3: Contingency Tables: A Two-Way Classification (23)
• 14.4: Comparing Several Multinomial Populations: A Two-Way Classification with Fixed Row or Column Totals (15)
• 14.5: Other Topics in Categorical Data Analysis
• 14: Chapter Review (12)
• 14: Multiple Choice Exercises (24)
• 14: JMP Simulations (6)
• 14: Concept Questions (12)
• 14: Labs (11)
• 14: Test Bank (72)

• Chapter 15: Nonparametric Statistics
• 15: Stats in Practice Video Question (1)
• 15.1: The Wilcoxon Rank Sum Test: Independent Random Samples (15)
• 15.2: The Sign Test for a Paired Experiment (11)
• 15.3: A Comparison of Statistical Tests
• 15.4: The Wilcoxon Signed-Rank Test for a Paired Experiment (15)
• 15.5: The Kruskal–Wallis H-Test for Completely Randomized Designs (9)
• 15.6: The Friedman Fr-Test for Randomized Block Designs (10)
• 15.7: Rank Correlation Coefficient (16)
• 15.8: Summary
• 15: Chapter Review (12)
• 15: Multiple Choice Exercises (35)
• 15: Concept Questions (10)
• 15: Labs (6)
• 15: Test Bank (133)

• Chapter PJT: Project
• PJT.1: Project (4)

Introduction to Probability and Statistics (Metric Version), 15th Edition, by Mendenhall, Beaver, and Beaver is a major overhaul from the previous edition, lowering the reading level, introducing concepts in a more intuitive way, and significantly increasing homework scaffolding for difficulty level. Written in compliance with the GAISE college report, this text teaches students to become problem solvers adept at using technology to facilitate statistical reasoning as well as the interpretation of statistical results. Students will be able to describe real sets of data meaningfully, what the statistical tests mean in terms of their practical applications, how to evaluate the validity of the assumptions behind statistical tests and will know what to do when statistical assumptions have been violated. The 15th edition contains 1,884 exercises, employs real data throughout, and includes at least 75% new or updated examples. Introduction to Probability and Statistics (Metric Version), 15th Edition, adds new sections on the uniform and exponential distributions, normal probability plots for assessing normality, best subsets regression procedures, and binary logistic regression. The WebAssign component for this text engages students with an interactive eBook and several other resources.

#### New for Spring '21

• Questions updated with SALT (Statistical Analysis and Learning Tool), including questions with frequency data and questions requiring the implementation of a Chi-Square test.

#### New for Fall '20 / Spring '21 Academic Year

• SALT (Statistical Analysis and Learning Tool) is a data analysis tool for introductory level statistics courses that helps students gain improved conceptual understanding of statistics through visualization and analysis of datasets. SALT can be used on its own or as a tool to answer SALT-enabled questions in WebAssign.
• #### Instructor Introduction - Statistical Analysis and Learning Tool (SALT) | WebAssign

The Statistical Analysis and Learning Tool (SALT) is designed by statisticians, for statisticians, to help you get introductory students deeply engaged in da...

### Instructor Product Features

• Test Banks: A pool of over 1,000 assessments for use in quizzes, tests, and exams.
• Instructor Resources include Instructional Lecture Videos, hosted by Dana Mosely. These topic-specific videos provide explanations of key concepts, examples, and applications in a lecture-based format. Lecture PowerPoint slides are also available.

### Student Learning Tools

• Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
• Master It Tutorials show students how to solve a similar problem in multiple steps by providing direction along with derivation, so the student understands the concepts and reasoning behind the problem solving.
• Student Resources include Data Analysis Tool Instructions / Tech Guides for the below software. Can be used stand-alone or in conjunction with assessment items (Homework, Labs, or Project Milestones).
• TI-83/84 and TI-Nspire Calculator
• Excel
• JMP
• Minitab
• SPSS
• R

### Questions to Help Students Gain Interest and Assess Conceptual Understanding

• Stats in Practice Video Questions (SIP) show students how Statistics applies in the real world. Short and current news videos introduce each module. Each video is accompanied by multiple-choice and discussion questions, so that students can understand real-world context of what they're learning and stay engaged throughout the whole module.
• Concept Questions (CQ) provide a new way of engaging with non-computational questions. Students enter a free response before they choose a multiple-choice answer, closing the gap between homework and test preparedness.

### Tools to Explore Real Data with Technology

• The Statistical Analysis and Learning Tool (SALT) is designed by statisticians, for statisticians, to help you get introductory students deeply engaged in data manipulation, analysis, and interpretation without getting bogged down in complex computations.
• SALT Tutorial Questions (ST): Help your students understand how to use SALT in their WebAssign assignments. Students are provided with scaffolded instruction not only on the content, but how to use SALT to compute and analyze data.
• Simulation Questions by JMP (JMP): Have your students understand concepts by utilizing real data. Students must discover the answer to guided questions by interacting with a simulation of real data in our JMP interactive applet within WebAssign.
• Labs (Lab): Students can perform real statistical analysis in class or online with premade and module-specific Stats Labs. Require students to use the instructor-selected data analysis tool to analyze a real data set, pulling together knowledge learned from that module and previous material to facilitate whole-picture learning.
• Project Milestones (PJT): Allow one place for students to ideate, collaborate, and submit a longer-term project. The four sequential milestones are:
1. Research Design
2. Gather Data
3. Analyze Data
4. Present Results

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
SIP - Stats in Practice Video Question
JMP - Simulation Question by JMP
CQ - Concept Question
Lab - Lab
PJT - Project Milestone
TB - Test Bank
XP - Extra Problem
MC - Multiple Choice Question (not in textbook)
MI - Master It
MI.SA - Stand Alone Master It
S - SALT
ST - SALT Tutorial

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter PJT: Project
PJT.1 4 001 002 003 004
Chapter 1: Describing Data With Graphs
1.CE 3 001.CV 002.CV 003.CV
1.CQ 26 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
1.JMP 9 001 002 003 004 005 006 007 008 009
1.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
1.MC 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 022 023 024 025 026 027 028 029 030 031 032 033 034 035
1.R 41 001 002 003 004 005 006 007 008 009 011 012 013 015 017 018 019.S 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.S 516.XP 517.XP 518.XP.S 519.XP 520.XP 521.XP 522.XP.S 523.XP.S 524.XP 525.XP
1.SIP 1 001
1.TB 110 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110
1.1 22 001 002 003 004 006 007 008 009 010 011 012 013 014 019 020 021 022 023 024 025 026 027
1.2 17 001 002 004 005.S 007 008 010 011 012 013 015 016 017 018 019 020 021
1.3 20 001.S 002.S 003 004 005 009 010 011 012 013 014 015.S 016 017 020 021 022 023 024.S 025
1.4 31 ST.001.S SYS.001.S 001 003 007 008 009 010 011 013 014 015 017.MI 017.MI.SA 018 019.MI 019.MI.SA 020 021 022 024 025.MI 025.MI.SA 026 027 028 029 030 031 032 033
Chapter 2: Describing Data With Numerical Measures
2.CE 3 001.CV 002.CV 003.CV
2.CQ 25 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025
2.JMP 11 001 002 003 004 005 006 007 008 009 010 011
2.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
2.MC 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
2.R 37 001 002 003.S 004.S 006 007 009 010 011 012 013.S 014 015.S 016 019.S 020 021 022 023 025 501.XP 502.XP 503.XP 504.XP 505.XP.S 506.XP.S 507.XP 508.XP.S 509.XP 510.XP 511.XP.S 512.XP.S 513.XP 514.XP 515.XP 516.XP 517.XP
2.SIP 1 001
2.TB 317 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
2.1 20 002 003 005 006 009 010 011 012 013.MI 013.MI.SA 014.S 015.S 016 017.MI 017.MI.SA 018.S 019 020 021.S 022.S
2.2 13 001 002 003 004 005 006 007 009 010.MI 010.MI.SA 011 013 014.S
2.3 29 001.S 002.S 003.S 004.S 005.S 006 009 010 011 012 013 014 015.S 017.S 019.S 020.MI 020.MI.SA 021 022.MI.S 022.MI.SA 024 025.MI 025.MI.SA 026 027.S 028.S 030 031 032
2.4 27 ST.001.S ST.002.S SYS.001.S SYS.002.S 001.MI.S 001.MI.SA 002.S 004 005 007 008 009 010 011 012 013 016.S 017.MI.S 017.MI.SA 018 019 020 021 022 023 024 025
Chapter 3: Describing Bivariate Data
3.CE 1 001.CV
3.CQ 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
3.JMP 13 001 002 003 004 005 006 007 008 009 010 011 012 013
3.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
3.MC 13 001 002 003 004 005 006 007 008 009 010 011 012 013
3.R 26 001.S 002.S 003.S 004.S 005 006.S 008 009.S 010 011.S 012 013 015.S 016.S 019 020 501.XP 502.XP 503.XP.S 504.XP 505.XP.S 506.XP 507.XP.S 508.XP 509.XP 510.XP.S
3.SIP 1 001
3.TB 85 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085
3.1 16 003 004 004.MI 004.MI.SA 005 006 007 008 008.MI 008.MI.SA 009 010 011 012 013 014
3.2 24 001 002 003 005 006 007 008 009.MI 009.MI.SA 010 012 013 014 015 018 019.MI.S 019.MI.SA 020.S 021.S 023.S 024.S 025 027 028.S
Chapter 4: Probability
4.CE 1 001.CV
4.CQ 36 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036
4.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
4.MC 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
4.R 19 001 002 003 004 005 006 009 011 012 013 014 015 016 017 019 020 021 501.XP 502.XP
4.SIP 1 001
4.TB 7 001 002 003 004 005 006 007
4.1 23 001 002 003 004 007 008 011 012 013 014 016 018 019 020 021 022 023 024 025 026 027 028 029
4.2 35 001 002 003 008 009 011.MI 011.MI.SA 012 013 014 015 016 017 018 019 021 022 023 025 026 027.MI 027.MI.SA 028 029 030 031 033 034 035 036.MI 036.MI.SA 037 038 039 040
4.3 29 001 002 003 004 005 006 007 008 009 010 011 012 013.MI 013.MI.SA 014 015 017 018 019 021 022 023 025 027.MI 027.MI.SA 028.MI 028.MI.SA 029 030
4.4 33 001 002.MI 002.MI.SA 004 007 008 009 010 011 012 013 015.MI 015.MI.SA 016 017 018 019 020 021 023 024 025 026 027 029 030 031.MI 031.MI.SA 032 033 034 035 037
4.5 16 001 002 003 004.MI 004.MI.SA 005 006 007 008 009 011 012 013.MI 013.MI.SA 014 015
Chapter 5: Discrete Probability Distributions
5.CE 1 001.CV
5.CQ 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
5.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
5.MC 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
5.R 35 001 003 004 006.S 007 008.S 009.S 010 011.S 012 013 014 016.S 017 018 019.S 021.S 024.S 025 026 027 028 029.S 030 031 032.S 501.XP 502.XP.S 503.XP 504.XP 505.XP.S 506.XP.S 507.XP.S 508.XP 509.XP
5.SIP 1 001
5.TB 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
5.1 33 002 003 004 005 006 007 008 009 010 011 012 014 015 017.MI 017.MI.SA 018 019 020 021 022 024.MI 024.MI.SA 026 027 029 030 031 032 033.MI 033.MI.SA 034 035 037
5.2 51 002.S 003.S 004.S 005.S 006.MI.S 006.MI.SA 007.S 008.S 009.S 010.MI.S 010.MI.SA 011.S 012.S 013.S 014 015 016.S 017.S 018.S 019.S 020.S 021.S 022.S 023.S 027 028 029 031 032 033 034 035 036 038.MI 038.MI.SA 039 042.S 044.MI.S 044.MI.SA.S 045.S 047.S 048.S 050.S 051.S 052.MI.S 052.MI.SA.S 053.S 054 055 056.S 057.S
5.3 22 001 003 005.MI 005.MI.SA 006.MI 006.MI.SA 007 009 010 012 014 015 016 017 018 019 020 021.MI 021.MI.SA 022 023 024
5.4 31 002 003 004 005 006 007 008 009 010 011 013 014 015 016 017 018.MI 018.MI.SA 019 020.MI 020.MI.SA 021 024 025 027 029 030 031 032 033 034.MI 034.MI.SA
Chapter 6: The Normal Probability Distribution
6.CE 1 001.CV
6.CQ 12 001 002 003 004 005 006 007 008 009 010 011 012
6.JMP 1 001
6.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
6.MC 59 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059
6.R 25 001 002 003.S 005 006 008 009.S 010.S 011.S 012 014.S 015 016.S 017.S 018.S 019.S 020.S 501.XP.S 502.XP.S 503.XP.S 504.XP.S 505.XP.S 506.XP.S 507.XP.S 508.XP.S
6.TB 182 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
6.1 18 002 003 004 005 006 007 009 010 011 013 014 015 017.MI 017.MI.SA 018 019 020.MI 020.MI.SA
6.2 63 ST.001.S SYS.001.S 001.S 002.S 003.MI.S 003.MI.SA 004.S 005.S 006.S 007.S 008.S 009.S 010.S 011.S 012.S 013.S 014.S 015.S 016.S 019.S 020.S 021.S 023.S 025.S 026.S 027.S 028.S 029.MI.S 029.MI.SA 030.S 032.S 033.S 034.S 035.S 039.S 040.S 041.S 042.MI.S 042.MI.SA 043.S 044.S 045.S 046.MI 046.MI.SA 047 049 050 051 052.MI 052.MI.SA 053.S 054.S 055.S 057.S 060.S 062 063 064.S 065.S 066.S 067.S 068.S 070.S
6.3 26 001 002 003 005.MI.S 005.MI.SA.S 007.S 008.S 009.S 010.S 013.MI.S 013.MI.S.SA 013.MI.SA.S 014.S 015.S 016.S 017.S 018.S 019.S 020.S 021.MI.S 021.MI.SA.S 023.S 024.S 025.S 026.S 027.S 029.S
Chapter 7: Sampling Distributions
7.CE 2 001.CV 002.CV
7.CQ 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
7.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
7.MC 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
7.R 21 001 002 003.S 005.S 006 007 009 010.S 011.S 012.S 013 014.S 015 016 018 019.S 021 022.S 501.XP 502.XP 503.XP.S
7.SIP 1 001
7.TB 152 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
7.1 24 001 003 004 005 006 007 008 009 010 012 013 014 015 016 017 019 020 021 022 024 025 027 028 029
7.2 11 001 002 003 004 006 007 008.MI 008.MI.SA 010 012 013
7.3 29 001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017.MI 017.MI.SA 020.S 023.S 025 026 028 029.MI.S 029.MI.SA.S 030.S 031.MI 031.MI.SA 032 033.S
7.5 36 001 002 003 004 005 006 007 008 009.S 010.S 011.MI.S 011.MI.SA.S 012.S 013.S 014.S 015.S 016 017 018 019 020 021 022 023 024.S 025.MI.S 025.MI.SA.S 026.S 027.S 029.S 030.MI.S 030.MI.SA.S 031.S 032.S 033.S 035.S
7.6 14 003 004.MI 004.MI.SA 005 006 007 008 009 010 012 013 014 015 016
Chapter 8: Large-Sample Estimation
8.CE 3 001.CV 002.CV 003.CV
8.CQ 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
8.JMP 12 001 002 003 004 005 006 007 008 009 010 011 012
8.Lab 12 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS 002.TI
8.MC 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
8.R 24 001 002 004.S 005.S 006 007 008 009 010.S 011.S 013.S 014 015 017 018 501.XP 502.XP 503.XP.S 504.XP.S 505.XP 506.XP 507.XP 508.XP.S 509.XP.S
8.SIP 2 001 501.XP
8.ST 1 001.S
8.SYS 1 001.S
8.TB 107 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107
8.2 32 ST.001.S 001 003 004 005 006 007 008 009 010 011.S 012.S 013.S 014.S 015.S 016.S 017.S 018.S 019.S 022.S 023.S 024.MI.S 024.MI.SA 025 027 028 030.MI 030.MI.SA 031.MI.S 031.MI.SA 033 035
8.3 34 SYS.001.S 002.S 003.S 006.S 007.S 009 010 011 012 013 014 015 016.MI.S 016.MI.SA 017.S 018 019 020 021 022 023 024 025.S 027.MI 027.MI.SA 028 030 031 032 033.S 034.MI.S 034.MI.SA 036 037.S
8.4 19 001 002 003 004 005.MI 005.MI.SA 006 008 009 011 012 013 015 016 017 019 020.MI 020.MI.SA 021
8.5 20 001.S 002.S 005 006 007 009 010 011.S 013.S 014.MI 014.MI.SA 015.S 016.S 017.S 018.S 020.S 021.S 022.S 023.MI.S 023.MI.SA
8.6 18 001.S 002.S 004.S 006 007 008 010 011 012 014.MI 014.MI.SA 015 016 017 018 019 020 021
8.7 15 002.S 003.S 004.S 005.S 006.S 007.S 008.MI.S 008.MI.SA.S 010.S 011.S 012.MI.S 012.MI.SA.S 014.S 015.S 016.S
Chapter 9: Large-Sample Tests of Hypotheses
9.CE 4 001.CV 002.CV 003.CV 004.CV
9.CQ 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
9.JMP 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
9.Lab 24 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS 002.TI 003.Excel 003.JMP 003.Minitab 003.R 003.SPSS 003.TI 004.Excel 004.JMP 004.Minitab 004.R 004.SPSS 004.TI
9.MC 37 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037
9.R 29 001 002 003 004.S 006.S 007 008.S 010.S 011.S 012 013.S 015 016 017 501.XP 502.XP 503.XP.S 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.S 512.XP.S 513.XP.S 514.XP.S 515.XP
9.SIP 1 001
9.ST 1 001.S
9.SYS 1 001.S
9.TB 209 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
9.1 13 004 005 006 007 008 009 010 011 012.S 013 014 015.MI.S 015.MI.SA.S
9.2 30 ST.001.S SYS.001.S 002 004 006.S 007.S 008.S 009.S 010.S 011.S 012.S 013.S 014 015.S 016 017.S 018.S 019.S 020 021 022.MI 022.MI.SA 023.MI 023.MI.SA 025 026 027 029 030.MI 030.MI.SA
9.3 21 001 002 003.S 004.S 005 006 007.S 008.MI 008.MI.SA 009 011 013.MI 013.MI.SA 014 015 016 017 019 020 021 022
9.4 16 001.S 002.S 003.S 004.S 005.MI.S 005.MI.SA.S 006.S 008.S 011.S 012.MI.S 012.MI.SA.S 013.S 014.S 015.S 016 017
9.5 15 001 002 005.S 006.S 007.S 008.MI.S 008.MI.SA.S 009.S 010.S 012.S 013.S 014.S 015 016.S 017.S
Chapter 10: Inference From Small Samples
10.CQ 12 001 002 003 004 005 006 007 008 009 010 011 012
10.JMP 11 001 002 003 004 005 006 007 008 009 010 011
10.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
10.MC 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033
10.R 26 002.S 003.S 004.S 006 007.S 009.S 010 011.S 012.S 014 015.S 016.S 017 018 019.S 020.S 021 022 023 024.S 501.XP.S 502.XP 503.XP 504.XP 505.XP 506.XP.S
10.ST 1 001.S
10.SYS 1 001.S
10.TB 139 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
10.1 14 001 002.S 003.S 004.MI.S 004.MI.SA 005.S 007.S 008.S 009.S 010.S 012 013 014 015
10.2 31 001 002.S 003.S 004.S 005.S 006.S 007.S 008.S 009.MI.S 009.MI.SA 010.S 011.S 012.S 017.S 018 019 020.MI.S 020.MI.SA.S 023.S 024.S 025.S 026 027.S 028.MI.S 028.MI.SA 030.S 031.S 032.S 033.S 034 036.S
10.3 24 002 003 004 005 006 007.S 008.MI.S 008.MI.SA.S 009 010 012.S 013.S 014.S 015 016.S 017.MI.S 017.MI.SA.S 018.S 020.S 021 022 023 024.S 025.S
10.4 21 002 003 004 005 006 007.S 008.S 009.MI.S 009.MI.SA.S 010 012 013 014.S 016 017.MI.S 017.MI.SA.S 018.S 019 020.S 022.S 023.S
10.5 16 001.S 002.S 003.S 007.MI 007.MI.SA 008 009 010 011 012.MI 012.MI.SA 013 014 015 017 019
10.6 20 002.S 003.S 004.S 005.S 008.S 009.S 010.S 011.S 012 013 014.MI 014.MI.SA 015 016.MI 016.MI.SA 017 018 020 021 022
Chapter 11: The Analysis of Variance
11.CE 1 001.CV
11.CQ 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
11.JMP 12 001 002 003 004 005 006 007 008 009 010 011 012
11.Lab 9 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 002.JMP 002.Minitab 002.R 002.SPSS
11.MC 39 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039
11.R 16 001.S 002 004 006.S 007 008.S 010.S 011.S 012 013.S 014 015.S 501.XP 502.XP 503.XP.S 504.XP.S
11.SIP 1 001
11.TB 220 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
11.1 14 001 002 003 004 005 006 007 008 009 010 011 012 013 015
11.2 16 001.S 002.S 003.MI.S 003.MI.SA.S 004.S 005.S 006.S 008.S 009 010 011.S 012.MI.S 012.MI.SA 015 016.S 017.S
11.3 16 001 002 003 004 005 006 007 008.MI 008.MI.SA 009 010 013.S 015.MI.S 015.MI.SA.S 017 018.S
11.4 23 001 002 003 004 005.MI 005.MI.SA 006 009.S 010.MI.S 010.MI.SA 011.S 012 013 014 016.S 017.S 018.S 019.S 021 022.S 023.S 024 026.S
11.5 16 002 003 004 005.S 006.MI.S 006.MI.SA 007.MI.S 007.MI.SA 009.S 010.S 012 013.S 014 015 016 018.S
Chapter 12: Simple Linear Regression And Correlation
12.CE 1 001.CV
12.CQ 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
12.JMP 7 001 002 003 004 005 006 007
12.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
12.MC 42 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042
12.R 18 001 002 003.S 004 005 008 009 010.S 011 012 014.S 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.S
12.SIP 1 001
12.TB 102 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102
12.1 20 001 002 003 004 005 006 009 010 011 012 015.MI 015.MI.SA 016 017.MI.S 017.MI.SA 018.S 019 020 021 022
12.2 15 001 002 003 004 005 007.MI 007.MI.SA 008 009 010 011 013.MI 013.MI.SA 014 015
12.3 16 001 002 003 004 005 006 007.S 008.S 009 010 011.MI 011.MI.SA 013 015.MI 015.MI.SA 016
12.4 7 001 002 003 004 005 006 009.S
12.5 17 002 003 004 005 006 007 008 009 010 011 012 013 014.MI 014.MI.SA 016.MI.S 016.MI.SA 018
12.6 16 001 003 004.S 005.S 006 007 008.MI.S 008.MI.SA 009 010 011.MI 011.MI.SA 013 015 016 017
Chapter 13: Multiple Linear Regression Analysis
13.CE 1 001.CV
13.CQ 8 001 002 003 004 005 006 007 008
13.JMP 1 001
13.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
13.MC 51 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051
13.R 10 001 004 005 006 007 008 009 010 501.XP 502.XP
13.SIP 1 001
13.TB 50 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050
13.2 16 001 002 003 005.MI 005.MI.SA 006 007 008 009 010.MI 010.MI.SA 011 012 013 015 016
13.3 14 001 002 003 005 006 007 009 010 011 012.MI 012.MI.SA 014 015 016
13.4 16 001 002 003 004 005 006.MI 006.MI.SA 009 010 011 012 013 014 015 016 017
Chapter 14: Analysis of Categorical Data
14.CE 1 001.CV
14.CQ 12 001 002 003 004 005 006 007 008 009 010 011 012
14.JMP 6 001 002 003 004 005 006
14.Lab 11 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS
14.MC 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024
14.R 12 001.S 002 003.S 005 006.S 007.S 008 010 012.S 013.S 015 501.XP
14.SIP 1 001
14.TB 72 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072
14.2 24 001 002.S 003.S 004.S 005.S 006.S 007.S 008.S 009.S 010.S 011.S 014 015 016.MI.S 016.MI.SA 019.S 020.MI.S 020.MI.SA 022.S 023.S 024.S 026 027 028.S
14.3 23 001 002 003 004 005.S 007.S 009 010.MI 010.MI.SA 011 012 013.S 014 016 017.S 019.MI.S 019.MI.SA 020 021 022.S 024.S 025.S 026.S
14.4 15 001 002.S 003 004 005 006.S 007 008.MI.S 008.MI.SA.S 009.S 010.S 012.S 013.S 014.S 015.S
Chapter 15: Nonparametric Statistics
15.CE 1 001.CV
15.CQ 10 001 002 003 004 005 006 007 008 009 010
15.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
15.MC 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035
15.R 12 001 003 005 006 007 009 010 011 012 013 014 501.XP
15.SIP 1 001
15.TB 133 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
15.1 15 001 002 003.MI 003.MI.SA 004 005.MI 005.MI.SA 006 008 010 011 012 013 015 016
15.2 11 001 002 003 004 005.MI 005.MI.SA 006 008 009 012 013
15.4 15 001 002 004 005 006 007.MI 007.MI.SA 008 009.MI 009.MI.SA 011 013 014 015 016
15.5 9 001 002 004.MI 004.MI.SA 005 006 008 009 010
15.6 10 001 002.MI 002.MI.SA 003 005 007 008 009 010 011
15.7 16 001 002 004 005 006 008.MI 008.MI.SA 009 010.MI 010.MI.SA 011 012 013 014 015 017
Total 4713 (1)