# Calculus 1st edition

Rogawski, Jon
Publisher: Macmillan Learning

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$43.99
Higher Education Multi-Term \$72.99
High School \$15.99

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Precalculus Review
• 1.1: Real Numbers, Functions, and Graphs (18)
• 1.2: Linear and Quadratic Functions (20)
• 1.3: The Basic Classes of Funtions (15)
• 1.4: Trigonometric Functions (11)
• 1.5: Technology: Calculators and Computers (11)

• Chapter 2: Limits
• 2.1: Limits, Rates of Change, and Tangent Lines (10)
• 2.2: Limits: A Numerical and Graphical Approach (12)
• 2.3: Basic Limit Laws (11)
• 2.4: Limits and Continuity (12)
• 2.5: Evaluating Lmits Algebraically (14)
• 2.6: Trigonometric Limits (13)
• 2.7: Intermediate Value Theorem (10)
• 2.8: The Formal Definition of a Limit (11)

• Chapter 3: Differentiation
• 3.1: Definition of the Derivative (11)
• 3.2: The Derivative as a Function (16)
• 3.3: Product and Quotient Rules (13)
• 3.4: Rates of Change (12)
• 3.5: Higher Derivatives (12)
• 3.6: Trigonometric Functions (11)
• 3.7: The Chain Rule (12)
• 3.8: Implicit Differentiation (12)
• 3.9: Related Rates (11)

• Chapter 4: Applications of the Derivative
• 4.1: Linear Approximation and Applications (9)
• 4.2: Extreme Values (9)
• 4.3: The Mean Value Theorem and Monotonicity (9)
• 4.4: The Shape of a Graph (10)
• 4.5: Graph Sketching and Asymptotes (8)
• 4.6: Applied Optimization (17)
• 4.7: Newton's Method (9)
• 4.8: Antiderivatives (9)

• Chapter 5: The Integral
• 5.1: Approximating and Computing Area (11)
• 5.2: The Definite Integral (10)
• 5.3: The Fundamental Theorem of Calculus, Part I (9)
• 5.4: The Fundamental Theorem of Calculus, Part II (9)
• 5.5: Net or Total Change as the Integral of a Rate (11)
• 5.6: Substitution Method (8)

• Chapter 6: Applications of the Integral
• 6.1: Area Between Two Curves (11)
• 6.2: Setting Up Integrals: Colume, Density, Average Value (11)
• 6.3: Volumes of Revolution (11)
• 6.4: The Method of Cylindrical Shells (11)
• 6.5: Work and Energy (11)

• Chapter 7: The Exponential Function
• 7.1: Derivative of f (x)= bx and the Number e (2)
• 7.2: Inverse Functions (10)
• 7.3: Logarithms and Their Derivatives (15)
• 7.4: Exponential Growth and Decay
• 7.5: Compound Interest and Present Value
• 7.6: Models involving y'= k(y-b) (11)
• 7.7: L'Hopital's rule (11)
• 7.8: Inverse Trigonometric Functions (10)
• 7.9: Hyperbolic Functions (6)

• Chapter 8: Techniques of Integration
• 8.1: Numerical Integration (11)
• 8.2: Integration by Parts (11)
• 8.3: Trigonometric Integrals (11)
• 8.4: Trogonometric Substitution (21)
• 8.5: The Method of Partial Fractions (11)
• 8.6: Improper Integrals (11)

• Chapter 9: Further Applications of the Integral and Taylor Polynomials
• 9.1: Arc Length and Surface Area (10)
• 9.2: Fluid Pressure and Force (11)
• 9.3: Center of Mass (11)
• 9.4: Taylor Polynomials (11)

• Chapter 10: Introduction to Differential Equations
• 10.1: Solving Differential Equations (12)
• 10.2: Graphical and Numerical Models (11)
• 10.3 The Logistic Equation (11)
• 10.4: First-Order Linear Equations (11)

• Chapter 11: Infinite Series
• 11.1: Sequences (11)
• 11.2: Summing and Infinte Series (11)
• 11.3 Convergence of Series with Positive Terms (11)
• 11.4: Absolute and Conditional Convergence (11)
• 11.5: The Ratio and Root Tests (11)
• 11.6: Power Series (11)
• 11.7: Taylor Series (11)

• Chapter 12: Parametric Equations, Polar Coordinates, and Conic Sections
• 12.1: Parametric Equations (11)
• 12.2: Arc Length and Speed (11)
• 12.3 Polar Coordinates (11)
• 12.4: Area and Arc Length in Polar Coordinates (11)
• 12.5: Conic Sections (11)

• Chapter 13: Vector Geometry
• 13.1: Vectors in the Plane (11)
• 13.2: Vectors in Three Dimensions (11)
• 13.3: Dot Product and the Angle Between Two Vectors (11)
• 13.4: The Cross Product (11)
• 13.5: Planes in Three-Space (11)
• 13.6: A Survey of Quadric Surfaces (11)
• 13.7: Cylindrival and Spherical Coordinates (11)

• Chapter 14: Calculus of Vector-Valued Functions
• 14.1: Vector-Valued Functions (11)
• 14.2: Calculus of Vector-Valued Functions (11)
• 14.3: Arc Length and Speed (10)
• 14.4: Curvature (10)
• 14.5: Motion in Three-Space (10)
• 14.6: Planetary Motion According to Keplar and Newton (11)

• Chapter 15: Differentiation in Several Variables
• 15.1: Functions of Two of More Variables (11)
• 15.2: Limits and Continuity in Several Variables (11)
• 15.3: Partial Derivatives (11)
• 15.4: Differentiability, Linear Approximation, and Tangent Planes (11)
• 15.5: The Gradient and Directional Derivatives (11)
• 15.6: The Chain Rule (11)
• 15.7: Optimization in Several Variables (11)
• 15.8: Lagrange Multipliers: Optimizing with a Constraint (11)

• Chapter 16: Multiple Integration
• 16.1: Integration in Several Variables (11)
• 16.2: Double Integrals over More General Regions (11)
• 16.3: Triple Integrals (11)
• 16.4: Integration in Polar, Cylindrical, and Spherical Coordinates (11)
• 16.5: Change of Variablees (10)

• Chapter 17: Line and Surface Integrals
• 17.1: Vector Fields (11)
• 17.2 Line Integrals (11)
• 17.3: Conservative Vector Fields (11)
• 17.4: Parametrized Surfaces and Surface Integrals (11)
• 17.5: Surface Integrals of Vector Fields (11)

• Chapter 18: Fundamental Theorems of Vector Analysis
• 18.1 Green's Theorem (11)
• 18.2: Stokes' Theorem (10)
• 18.3: Divergence Theorem (10)

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Precalculus Review
1.1 18 002 004 006 010 012 018 020 022 034 036 046 048 058 060 070 072 074 076
1.2 20 002 004 006 008 010 012 014 016 018 020 024 026 028 030 036 040 042 044 046 050
1.3 15 002 004 006 008 010 012 014 016 018 020 022 028 030 032 034
1.4 11 004 008 010 012 018 022 024 026 036 038 052
1.5 11 002 003 004 006 008 012 014 016 018 020 022
Chapter 2: Limits
2.1 10 002 004 006 008 010 012 014 018 020 022
2.2 12 002 004 006 008 022 024 028 030 038 040 042 052
2.3 11 002 004 008 014 018 022 024 026 028 036 038
2.4 12 002 004 006 018 030 036 048 062 071 074 076 078
2.5 14 002 004 008 012 018 022 026 030 032 038 040 046 048 050
2.6 13 002 004 008 010 011 014 018 022 024 028 034 040 044
2.7 10 002 004 006 012 014 015 016 018 020 022
2.8 11 001 002 004 006 009 011 013 015 017 019 021
Chapter 3: Differentiation
3.1 11 002 008 020 022 028 042 044 048 056 068 070
3.2 16 006 010 014 020 022 026 030 034 036 040 042 046 050 054 056 070
3.3 13 004 008 010 014 016 022 028 030 036 038 045 046 047
3.4 12 002 004 008 014 017 020 028 032 040 042 046 050
3.5 12 004 008 010 012 022 024 026 034 042 045 047 051
3.6 11 002 004 006 016 020 028 031 041 042 047 048
3.7 12 004 008 014 018 026 036 045 047 054 064 066 072
3.8 12 002 012 018 022 026 028 030 034 035 038 039 052
3.9 11 002 010 014 016 020 024 026 028 032 036 043
Chapter 4: Applications of the Derivative
4.1 9 004 005 016 020 024 028 036 038 046
4.2 9 002 006 012 020 032 036 049 059 063
4.3 9 002 008 016 022 026 032 040 046 048
4.4 10 005 008 012 016 020 026 030 034 038 042
4.5 8 018 028 034 042 048 052 064 070
4.6 17 002 006 009 011 012 014 015 019 023 026 031 034 039 040 043 050 054
4.7 9 002 004 006 008 010 014 018 020 022
4.8 9 004 012 020 023 026 034 046 058 066
Chapter 5: The Integral
5.1 11 006 008 018 032 036 046 048 052 056 062 066
5.2 10 002 030 040 042 046 048 060 062 066 068
5.3 9 006 012 016 020 026 030 036 038 046
5.4 9 002 004 006 008 010 020 024 030 042
5.5 11 001 002 004 006 008 010 012 014 016 018 020
5.6 8 008 012 018 028 032 042 059 065
Chapter 6: Applications of the Integral
6.1 11 004 008 012 016 026 028 030 032 036 038 046
6.2 11 010 012 016 018 020 024 026 030 038 052 054
6.3 11 002 006 010 015 022 026 030 035 040 046 049
6.4 11 004 008 012 014 019 024 027 036 042 048 049
6.5 11 001 006 007 012 013 016 018 019 023 030 031
Chapter 7: The Exponential Function
7.1 2 004 010
7.2 10 004 011 013 026 028 032 033 034 036 038
7.3 15 010 012 016 018 022 027 028 030 038 040 042 048 056 064 070
7.6 11 003 005 007 009 011 012 013 017 019 021 023
7.7 11 003 009 015 019 023 025 033 039 041 047 050
7.8 10 004 008 014 018 022 028 031 035 041 047
7.9 6 002 011 023 029 065 073
Chapter 8: Techniques of Integration
8.1 11 002 006 011 014 021 025 027 031 038 041 046
8.2 11 004 012 018 024 027 036 042 047 052 065 066
8.3 11 002 006 012 016 022 030 038 042 050 053 060
8.4 21 005 006 008 009 015 016 017 018 021 022 027 028 033 034 038 039 052 053 054 055 056
8.5 11 002 004 007 014 018 027 031 040 042 059 065
8.6 11 002 023 024 034 036 041 043 054 066 075 080
Chapter 9: Further Applications of the Integral and Taylor Polynomials
9.1 10 004 006 009 018 022 025 028 032 038 040
9.2 11 006 009 010 012 014 016 017 019 020 021 022
9.3 11 002 004 006 013 016 019 020 023 027 028 035
9.4 11 002 006 008 012 016 022 023 032 037 038 047
Chapter 10: Introduction to Differential Equations
10.1 12 002 006 014 018 024 030 032 034 036 046 050 058
10.2 11 004 006 008 009 012 014 015 016 017 018 019
10.3 11 001 002 004 005 006 007 008 009 011 015 016
10.4 11 004 019 020 021 022 023 024 025 026 028 032
Chapter 11: Infinite Series
11.1 11 002 004 009 012 014 020 028 030 046 052 056
11.2 11 001 004 006 009 018 020 026 030 032 040 044
11.3 11 002 008 022 028 036 040 046 050 056 068 072
11.4 11 004 005 006 008 010 012 014 020 022 024 026
11.5 11 004 008 012 024 027 030 032 034 038 046 050
11.6 11 001 002 008 010 020 022 028 032 044 048 050
11.7 11 002 004 012 016 024 036 050 054 058 062 070
Chapter 12: Parametric Equations, Polar Coordinates, and Conic Sections
12.1 11 008 012 020 022 024 026 038 050 054 058 076
12.2 11 002 004 006 008 010 012 016 018 020 022 030
12.3 11 004 006 008 010 012 014 020 022 038 042 044
12.4 11 002 004 010 012 016 018 026 030 032 034 035
12.5 11 006 012 014 020 024 026 034 042 052 056 060
Chapter 13: Vector Geometry
13.1 11 004 006 012 024 026 030 034 038 046 050 056
13.2 11 002 006 008 012 014 018 022 028 036 042 048
13.3 11 004 010 014 020 024 030 034 044 052 060 070
13.4 11 004 006 014 018 026 032 036 042 044 058 064
13.5 11 002 008 012 018 022 028 030 036 044 052 060
13.6 11 002 004 006 008 010 014 016 022 024 026 034
13.7 11 002 006 016 026 034 036 042 045 058 062 064
Chapter 14: Calculus of Vector-Valued Functions
14.1 11 004 006 008 010 012 014 018 022 024 026 036
14.2 11 002 004 014 019 024 026 030 034 044 048 056
14.3 10 002 004 007 008 010 012 014 015 016 020
14.4 10 002 004 009 010 014 030 041 048 052 060
14.5 10 004 014 016 020 026 032 034 040 044 046
14.6 11 002 003 006 007 008 009 010 012 013 016 017
Chapter 15: Differentiation in Several Variables
15.1 11 002 006 020 022 028 045 046 048 050 052 054
15.2 11 002 004 006 016 018 020 022 028 030 036 038
15.3 11 002 008 014 032 034 044 048 050 054 058 064
15.4 11 004 006 008 010 012 018 020 024 030 034 038
15.5 11 002 006 010 012 020 028 034 038 040 042 048
15.6 11 002 004 008 012 014 017 018 022 024 028 030
15.7 11 002 006 010 012 017 024 028 032 034 036 040
15.8 11 004 006 008 010 012 016 022 026 028 030 035
Chapter 16: Multiple Integration
16.1 11 002 009 010 017 020 023 027 029 033 037 039
16.2 11 005 012 014 017 022 028 039 043 051 055 060
16.3 11 003 006 007 012 017 019 023 025 031 033 035
16.4 11 002 004 005 007 015 024 029 033 044 055 059
16.5 10 001 002 007 013 016 021 029 031 040 043
Chapter 17: Line and Surface Integrals
17.1 11 001 004 014 016 017 019 020 022 024 027 028
17.2 11 002 004 008 009 017 022 024 033 038 040 049
17.3 11 001 002 004 005 007 009 012 017 019 022 023
17.4 11 003 007 013 019 022 027 029 036 037 039 040
17.5 11 001 002 005 007 011 013 017 019 021 022 029
Chapter 18: Fundamental Theorems of Vector Analysis
18.1 11 002 003 004 005 006 009 011 015 017 020 027
18.2 10 001 002 005 006 007 009 011 014 019 021
18.3 10 003 004 005 008 011 013 014 015 018 021
Total 1200