# Fundamentals of Biostatistics 8th edition

Bernard Rosner
Publisher: Cengage Learning

## Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

• Rosner Fundamentals of Biostatistics 8e with SALT

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: General Overview
• 1: Concept Explorations (2)

• Chapter 2: Descriptive Statistics
• 2: Concept Explorations (4)
• 2.1: Introduction
• 2.2: Measures of Location
• 2.3: Some Properties of the Arithmetic Mean
• 2.5: Some Properties of the Variance and Standard Deviation
• 2.6: The Coefficient of Variation
• 2.7: Grouped Data
• 2.8: Graphic Methods
• 2.9: Case Study 1: Effects of Lead Exposure on Neurological and Psychological Function in Children
• 2.10: Case Study 2: Effects of Tobacco Use on Bone-Mineral Density in Middle-Aged Women
• 2.11: Obtaining Descriptive Statistics on the Computer
• 2.12: Summary
• 2: Problems (14)
• 2: Labs (10)

• Chapter 3: Probability
• 3: Concept Explorations (4)
• 3.1: Introduction
• 3.2: Definition of Probability
• 3.3: Some Useful Probabilistic Notation
• 3.4: The Multiplication Law of Probability
• 3.5: The Addition Law of Probability
• 3.6: Conditional Probability
• 3.7: Bayes' Rule and Screening Tests
• 3.8: Bayesian Inference
• 3.9: ROC Curves
• 3.10: Prevalence and Incidence
• 3.11: Summary
• 3: Problems (25)

• Chapter 4: Discrete Probability Distributions
• 4: Concept Explorations (3)
• 4.1: Introduction
• 4.2: Random Variables
• 4.3: The Probability-Mass Function for a Discrete Random Variable
• 4.4: The Expected Value of a Discrete Random Variable
• 4.5: The Variance of a Discrete Random Variable
• 4.6: The Cumulative-Distribution Function of a Discrete Random Variable
• 4.7: Permutations and Combinations
• 4.8: The Binomial Distribution
• 4.9: Expected Value and Variance of the Binomial Distribution
• 4.10: The Poisson Distribution
• 4.11: Computation of Poisson Probabilities
• 4.12: Expected Value and Variance of the Poisson Distribution
• 4.13: Poisson Approximation to the Binomial Distribution
• 4.14: Summary
• 4: Problems (31)
• 4: Labs (5)

• Chapter 5: Continuous Probability Distributions
• 5: Concept Explorations (3)
• 5.1: Introduction
• 5.2: General Concepts
• 5.3: The Normal Distribution
• 5.4: Properties of the Standard Normal Distribution
• 5.5: Conversion from an N(μ, σ2) Distribution to an N(0, 1) Distribution
• 5.6: Linear Combinations of Random Variables
• 5.7: Normal Approximation to the Binomial Distribution
• 5.8: Normal Approximation to the Poisson Distribution
• 5.9: Summary
• 5: Problems (46)

• Chapter 6: Estimation
• 6: Concept Explorations (7)
• 6.1: Introduction
• 6.2: The Relationship Between Population and Sample
• 6.3: Random-Number Tables
• 6.4: Randomized Clinical Trials
• 6.5: Estimation of the Mean of a Distribution
• 6.6: Case Study: Effects of Tobacco Use on Bone-Mineral Density (BMD) in Middle-Aged Women
• 6.7: Estimation of the Variance of a Distribution
• 6.8: Estimation for the Binomial Distribution
• 6.9: Estimation for the Poisson Distribution
• 6.10: One-Sided Confidence Intervals
• 6.11: The Bootstrap
• 6.12: Summary
• 6: Problems (33)
• 6: Labs (34)

• Chapter 7: Hypothesis Testing: One-Sample Inference
• 7: Concept Explorations (5)
• 7.1: Introduction
• 7.2: General Concepts
• 7.3: One-Sample Test for the Mean of a Normal Distribution: One-Sided Alternatives
• 7.4: One-Sample Test for the Mean of a Normal Distribution: Two-Sided Alternatives
• 7.5: The Relationship Between Hypothesis Testing and Confidence Intervals
• 7.6: The Power of a Test
• 7.7: Sample-Size Determination
• 7.8: One-Sample Χ2 Test for the Variance of a Normal Distribution
• 7.9: One-Sample Inference for the Binomial Distribution
• 7.10: One-Sample Inference for the Poisson Distribution
• 7.11: Case Study: Effects of Tobacco Use on Bone-Mineral Density in Middle-Aged Women
• 7.12: Derivation of Selected Formulas
• 7.13: Summary
• 7: Problems (41)
• 7: Labs (18)

• Chapter 8: Hypothesis Testing: Two-Sample Inference
• 8: Concept Explorations (5)
• 8.1: Introduction
• 8.2: The Paired t Test
• 8.3: Interval Estimation for the Comparison of Means from Two Paired Samples
• 8.4: Two-Sample t Test for Independent Samples with Equal Variances
• 8.5: Interval Estimation for the Comparison of Means from Two Independent Samples (Equal Variance Case)
• 8.6: Testing for the Equality of Two Variances
• 8.7: Two-Sample t Test for Independent Samples with Unequal Variances
• 8.8: Case Study: Effects of Lead Exposure on Neurologic and Psychological Function in Children
• 8.9: Estimation of Sample Size and Power for Comparing Two Means
• 8.10: The Treatment of Outliers
• 8.11: Derivation of Equation 8.13
• 8.12: Summary
• 8: Problems (47)
• 8: Labs (30)

• Chapter 9: Nonparametric Methods
• 9: Concept Explorations (3)
• 9.1: Introduction
• 9.2: The Sign Test
• 9.3: The Wilcoxon Signed-Rank Test
• 9.4: The Wilcoxon Rank-Sum Test
• 9.5: Case Study: Effects of Lead Exposure on Neurological and Psychological Function in Children
• 9.6: Permutation Tests
• 9.7: Summary
• 9: Problems (21)

• Chapter 10: Hypothesis Testing: Categorical Data
• 10: Concept Explorations (3)
• 10.1: Introduction
• 10.2: Two-Sample Test for Binomial Proportions
• 10.3: Fisher's Exact Test
• 10.4: Two-Sample Test for Binomial Proportions for Matched-Pair Data (McNemar's Test)
• 10.5: Estimation of Sample Size and Power for Comparing Two Binomial Proportions
• 10.6: R × C Contingency Tables
• 10.7: Chi-Square Goodness-of-Fit Test
• 10.8: The Kappa Statistic
• 10.9: Derivation of Selected Formulas
• 10.10: Summary
• 10: Problems (43)
• 10: Labs (6)

• Chapter 11: Regression and Correlation Methods
• 11: Concept Explorations (6)
• 11.1: Introduction
• 11.2: General Concepts
• 11.3: Fitting Regression Lines—The Method of Least Squares
• 11.4: Inferences About Parameters from Regression Lines
• 11.5: Interval Estimation for Linear Regression
• 11.6: Assessing the Goodness of Fit of Regression Lines
• 11.7: The Correlation Coefficient
• 11.8: Statistical Inference for Correlation Coefficients
• 11.9: Multiple Regression
• 11.10: Case Study: Effects of Lead Exposure on Neurologic and Psychological Function in Children
• 11.11: Partial and Multiple Correlation
• 11.12: Rank Correlation
• 11.13: Interval Estimation for Rank-Correlation Coefficients
• 11.14: Derivation of Equation 11.26
• 11.15: Summary
• 11: Problems (27)
• 11: Labs (17)

• Chapter 12: Multisample Inference
• 12: Concept Explorations (3)
• 12.1: Introduction to the One-Way Analysis of Variance
• 12.2: One-Way ANOVA—Fixed-Effects Model
• 12.3: Hypothesis Testing in One-Way ANOVA—Fixed-Effects Model
• 12.4: Comparisons of Specific Groups in One-Way ANOVA
• 12.5: Case Study: Effects of Lead Exposure on Neurologic and Psychological Function in Children
• 12.6: Two-Way ANOVA
• 12.7: The Kruskal-Wallis Test
• 12.8: One-Way ANOVA—The Random-Effects Model
• 12.9: The Intraclass Correlation Coefficient
• 12.10: Mixed Models
• 12.11: Derivation of Equation 12.30
• 12.12: Summary
• 12: Problems (29)
• 12: Labs (9)

• Chapter 13: Design and Analysis Techniques for Epidemiologic Studies
• 13: Concept Explorations (3)
• 13.1: Introduction
• 13.2: Study Design
• 13.3: Measures of Effect for Categorical Data
• 13.4: Attributable Risk
• 13.5: Confounding and Standardization
• 13.6: Methods of Inference for Stratified Categorical Data—The Mantel-Haenszel Test
• 13.7: Multiple Logistic Regression
• 13.8: Extensions to Logistic Regression
• 13.9: Sample Size Estimation for Logistic Regression
• 13.10: Meta-Analysis
• 13.11: Equivalence Studies
• 13.12: The Cross-Over Design
• 13.13: Clustered Binary Data
• 13.14: Longitudinal Data Analysis
• 13.15: Measurement-Error Methods
• 13.16: Missing Data
• 13.17: Derivation of 100% × (1 − α) CI for the Risk Difference
• 13.18: Summary
• 13: Problems (31)

• Chapter 14: Hypothesis Testing: Person-Time Data
• 14.1: Measure of Effect for Person-Time Data
• 14.2: One-Sample Inference for Incidence-Rate Data
• 14.3: Two-Sample Inference for Incidence-Rate Data
• 14.4: Power and Sample-Size Estimation for Person-Time Data
• 14.5: Inference for Stratified Person-Time Data
• 14.6: Power and Sample-Size Estimation for Stratified Person-Time Data
• 14.7: Testing for Trend: Incidence-Rate Data
• 14.8: Introduction to Survival Analysis
• 14.9: Estimation of Survival Curves: The Kaplan-Meier Estimator
• 14.10: The Log-Rank Test
• 14.11: The Proportional-Hazards Model
• 14.12: Power and Sample-Size Estimation under the Proportional-Hazards Model
• 14.13: Parametric Survival Analysis
• 14.14: Parametric Regression Models for Survival Data
• 14.15: Derivation of Selected Formulas
• 14.16: Summary
• 14: Problems (20)

• Chapter PJT: Project
• PJT.1: Project (4)

Bernard Rosner's Fundamentals of Biostatistics, Eighth edition, is a practical introduction to the methods, techniques, and computation of statistics with human subjects. It prepares students for their future courses and careers by introducing the statistical methods most often used in medical literature. Rosner minimizes the amount of mathematical formulation (algebra-based) while still giving complete explanations of all the important concepts. As in previous editions, a major strength of this book is that every new concept is developed systematically through completely worked out examples from current medical research problems. Most methods are illustrated with specific instructions as to implementation using software either from SAS, Stata, R, Excel or Minitab. The WebAssign component for this text engages students with an interactive eTextbook and several other resources.

### New for Fall '22

• You can view a complete list of digital content updates made for this title here.

### Instructor Product Features

• Instructor Resources include Concept Videos. Concept Videos questions are 7-10 minutes in length and are designed to help students with big picture understanding of statistics by discussing a concept followed by two to three comprehension questions. Concept Videos are also available as a standalone resource for lectures. Lecture PowerPoint slides are also available.

### Student Learning Tools

• Read It links under each question quickly jump to the corresponding section of a complete, interactive eTextbook that lets students highlight and take notes as they read.
• Student Resources include Data Analysis Tool Instructions / Tech Guides for the below software. Can be used stand-alone or in conjunction with assessment items (Homework, Labs, or Project Milestones).
• TI-83/84 and TI-Nspire Calculator
• Excel
• JMP
• Minitab
• SPSS
• R

### Content Available for Statistics

• View several of the often-available question types in Statistics content here. You can see which questions are available for your specific course below.

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
E - End of Chaper Exercise
SIP - Stats in Practice
CV - Concept Video Question
S - SALT
ST - SALT Tutorial
Lab - Lab
PJT - Project Milestone

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter PJT: Project
PJT.1 4 001 002 003 004
Chapter Test
Test.7 E.021-022.S E.028-029.S E.079-080.S E.110-113.S
Chapter 1: General Overview
1.CE 2 001.CV 001.SIP
Chapter 2: Descriptive Statistics
2.CE 4 001.CV 001.SIP 002.CV 003.CV
2.E 14 ST.001.S ST.002.S ST.003.S SYS.001.S 001-007.S 008-012.S 013-018.S 019-022.S 023-025.S 031-032.S 033-034 035-037.S 038-046 047-050
2.Lab 10 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS
Chapter 3: Probability
3.CE 4 001.CV 001.SIP 002.SIP 003.SIP
3.E 25 001-015 016-027 028-031 032-049 050-052 053-063 064-067 068-075 076-078 083-086 087-092 093-096 097-100 101-103 104-107 108-110 111-114 115-117 118-121 122-124 125-127 128-131 132-135 136-140 141-144
Chapter 4: Discrete Probability Distributions
4.CE 3 001.CV 001.SIP 002.SIP
4.E 31 ST.001.S SYS.001.S 001-004 005-006 007 008 009-010.S 011 012 013 014-021.S 023 024-029 030-032.S 033-037.S 038-041.S 042-047.S 048-050 053 054-058.S 059-063.S 064-066 067-070 074-079.S 080-082 086-088 089-091 092-095 099-100.S 101-103.S 104-106
4.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
Chapter 5: Continuous Probability Distributions
5.CE 3 001.CV 001.SIP 002.CV
5.E 46 ST.001.S ST.002.S ST.003.S ST.004.S SYS.001.S SYS.002.S SYS.004.S 001-005.S 006-009.S 010-011.S 012-013.S 014-016.S 017-020.S 021-024.S 025-030.S 031-035.S 036-041.S 042-044 045 047-049.S 050-052.S 053-057.S 058.S 059-061 062-064 065-067.S 068-070.S 071-074.S 075-077 078-079 081-085 086-088.S 089-091.S 092-094.S 095-098.S 099-101 102-105.S 106.S 107.S 108.S 109-112.S 113-116.S 117-119.S 120-122.S 123-125.S 126-130.S
Chapter 6: Estimation
6.CE 7 001.CV 001.SIP 002.CV 002.SIP 003.CV 003.SIP 004.CV
6.E 33 ST.001.S SYS.001.S 005-010.S 011-017.S 018-022.S 023-024.S 025-026.S 027-029.S 030-032.S 033-035.S 036-039.S 040-046.S 047-051.S 052-055.S 059.S 064-066.S 067-069.S 070.S 071.S 072.S 073.S 074.S 075-076 077-080.S 081-083.S 084-085.S 086-087.S 088-096 097-101.S 102-103 104-107.S 108-109 110-116.S
6.Lab 34 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS 003.Excel 003.JMP 003.Minitab 003.R 003.SPSS 003.TI 004.Excel 004.JMP 004.Minitab 004.R 004.SPSS 005.Excel 005.JMP 005.Minitab 005.R 005.SPSS 005.TI 006.Excel 006.JMP 006.Minitab 006.R 006.SPSS 006.TI
Chapter 7: Hypothesis Testing: One-Sample Inference
7.CE 5 001.CV 001.SIP 002.CV 002.SIP 003.CV
7.E 41 ST.001.S ST.002.S ST.003.S SYS.001.S SYS.002.S SYS.003.S 001-005.S 006.S 007.S 008.S 009-011.S 012-016.S 017-020.S 021-022.S 023-024 025.S 026.S 027.S 028-029.S 030-032.S 035-042.S 043-047.S 047 048-051 052-055.S 056-059.S 060-064.S 065-066.S 068.S 069-071 072-074.S 079-080.S 081-085.S 086-089.S 093-095.S 098-100.S 101-104.S 105-107.S 108-109.S 110-113.S 114-118 119-121
7.Lab 18 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS 002.TI 003.Excel 003.JMP 003.Minitab 003.R 003.SPSS 003.TI
Chapter 8: Hypothesis Testing: Two-Sample Inference
8.CE 5 001.CV 001.SIP 002.CV 002.SIP 003.SIP
8.E 47 ST.001.S ST.002.S SYS.001.S SYS.002.S 001.S 002-013.S 014-018.S 019-022.S 023-024.S 025-027.S 028-030.S 031-038.S 039-043.S 044-047.S 048.S 049-052.S 053-055.S 056-061.S 062-065.S 066-069.S 070.S 071.S 072.S 073-074.S 077-080.S 081-084.S 085-087.S 088.S 089-093.S 094-098.S 099-102.S 103-105.S 106-109.S 115-116.S 117-120.S 121-124.S 125-128.S 129-133.S 134-135.S 136-138.S 142-145.S 146-149.S 150-153.S 154-157.S 158-160.S 164-167.S 173-176.S
8.Lab 30 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS 002.TI 003.Excel 003.JMP 003.Minitab 003.R 003.SPSS 003.TI 004.Excel 004.JMP 004.Minitab 004.R 004.SPSS 004.TI 005.Excel 005.JMP 005.Minitab 005.R 005.SPSS 005.TI
Chapter 9: Nonparametric Methods
9.CE 3 001.CV 001.SIP 002.CV
9.E 21 001-003.S 004-006.S 007-008.S 009-010.S 011-012.S 013-016.S 017-021.S 022-025.S 026-030.S 031.S 036-038.S 039-040.S 041.S 042-044 045-048.S 049-050.S 053-054.S 055-060.S 061-064.S 065-072.S 073-077.S
Chapter 10: Hypothesis Testing: Categorical Data
10.CE 3 001.CV 001.SIP 002.SIP
10.E 43 ST.001.S 001-005.S 006-007 008-012.S 013.S 014 015.S 016 017-018.S 019-022.S 023-024.S 027-028.S 029-031.S 032-036.S 042-046.S 051-052.S 053-058.S 063-064.S 065-067.S 068-070.S 071-073.S 074-077.S 078-080.S 081-083.S 084-085 086-089.S 090-092.S 093-096.S 097-100.S 101-103.S 104-106.S 107-110.S 111-113.S 114-115.S 116-118 119-122.S 123-126.S 127-129.S 130-134.S 135-138.S 139-142.S 143-146.S 147-152.S
10.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
Chapter 11: Regression and Correlation Methods
11.CE 6 001.CV 001.SIP 002.CV 002.SIP 003.CV 003.SIP
11.E 27 001-007.S 008 009-012.S 013-018.S 025-030.S 031-033.S 034-035.S 037-038.S 039-043.S 044.S 045.S 049-053.S 054-059.S 060-063.S 064-071.S 072-076.S 077-078.S 079-084.S 085-088.S 089-091.S 092-095.S 096-099.S 100-102.S 103-106.S 107-111.S 114-117 118-121.S
11.Lab 17 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS 002.TI 003.Excel 003.JMP 003.Minitab 003.R 003.SPSS
Chapter 12: Multisample Inference
12.CE 3 001.CV 001.SIP 002.SIP
12.E 29 001-005.S 006-008.S 009-011.S 012-013.S 014-017.S 018-019.S 020-025.S 027.S 028.S 029.S 030.S 031-034.S 035-036.S 037-038.S 040-041.S 042-043.S 044-046.S 047.S 052-054.S 055.S 056-060.S 062 064-066.S 067-071.S 072-073 074-077.S 078-081.S 082-085.S 086-088.S
12.Lab 9 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 002.JMP 002.Minitab 002.R 002.SPSS
Chapter 13: Design and Analysis Techniques for Epidemiologic Studies
13.CE 3 001.SIP 002.SIP 003.SIP
13.E 31 001-007.S 008.S 009-013.S 015-018.S 019-023.S 024-025.S 026-028.S 032-033.S 034-035.S 036-038.S 039-042.S 043-044.S 047.S 049-054.S 055-061.S 062-064.S 065-067.S 068-072.S 073-076.S 077 080-084.S 085-087.S 088-092.S 093-098.S 099-100 101-105.S 106.S 107-108.S 109-110.S 111-114.S 118-121.S
Chapter 14: Hypothesis Testing: Person-Time Data
14.E 20 001-006.S 007-011.S 012 014 016-021.S 022-024.S 025-026.S 027-028.S 032-036 043-047.S 048-052.S 053-056.S 057-060.S 061-062.S 063-064.S 066-067.S 068-071.S 072-075.S 076-079.S 080-084.S
Total 592 (5)