Calculus: Early Transcendentals 5th edition


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term $39.95
High School $10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Functions and Models
    • 1.1 Four Ways to Represent a Function (18)
    • 1.2 Mathematical Models: A Catalog of Essential Functions (6)
    • 1.3 New Functions from Old Functions (14)
    • 1.4 Graphing Calculators and Computers (2)
    • 1.5 Exponential Functions (4)
    • 1.6 Inverse Functions and Logarithms (18)
    • Chapter Review

  • Chapter 2: Limits and Derivatives
    • 2.1 The Tangent and Velocity Problems (1)
    • 2.2 The Limit of a Function (3)
    • 2.3 Calculating Limits Using the Limit Laws (12)
    • 2.4 The Precise Definition of a Limit (1)
    • 2.5 Continuity (6)
    • 2.6 Limits at Infinity: Horizontal Asymptotes (9)
    • 2.7 Tangents, Velocities, and Other Rates of Change (6)
    • 2.8 Derivatives (11)
    • 2.9 The Derivative as a Function (6)
    • Chapter Review

  • Chapter 3: Differentiation Rules
    • 3.1 Derivatives of Polynomials and Exponential Functions (13)
    • 3.2 The Product and Quotient Rules (16)
    • 3.3 Rates of Change in the Natural and Social Sciences (5)
    • 3.4 Derivatives of Trigonometric Functions (14)
    • 3.5 The Chain Rule (27)
    • 3.6 Implicit Differentiation (15)
    • 3.7 Higher Derivatives (3)
    • 3.8 Derivatives of Logarithmic Functions (19)
    • 3.9 Hyperbolic Functions
    • 3.10 Related Rates (21)
    • 3.11 Linear Approximations and Differentials (8)
    • Chapter Review

  • Chapter 4: Applications of Differentiation
    • 4.1 Maximum and Minimum Values (15)
    • 4.2 The Mean Value Theorem (3)
    • 4.3 How Derivatives Affect the Shape of a Graph (12)
    • 4.4 Indeterminate Forms and L'Hospital's Rule (16)
    • 4.5 Summary of Curve Sketching
    • 4.6 Graphing with Calculus and Calculators (1)
    • 4.7 Optimization Problems (22)
    • 4.8 Applications to Business and Economics (6)
    • 4.9 Newton's Method (10)
    • 4.10 Antiderivatives (22)
    • Chapter Review

  • Chapter 5: Integrals
    • 5.1 Areas and Distances (6)
    • 5.2 The Definite Integral (17)
    • 5.3 The Fundamental Theorem of Calculus (18)
    • 5.4 Indefinite Integrals and the Net Change Theorem (4)
    • 5.5 The Substitution Rule (27)
    • 5.6 The Logaritm Defined as an Integral
    • Chapter Review

  • Chapter 6: Applications of Integration
    • 6.1 Areas between Curves (12)
    • 6.2 Volumes (18)
    • 6.3 Volumes by Cylindrical Shells (14)
    • 6.4 Work (9)
    • 6.5 Average Value of a Function (6)
    • Chapter Review

  • Chapter 7: Techniques of Integration
    • 7.1 Integration by Parts (17)
    • 7.2 Triponometric Integrals (12)
    • 7.3 Trigonometric Substitution (6)
    • 7.4 Integration of Rational Functions by Partial Fractions (9)
    • 7.5 Strategy for Integration
    • 7.6 Integration Using Tables and Computer Algebra Systems (3)
    • 7.7 Approximate Integration (10)
    • 7.8 Improper Integrals (12)
    • Chapter Review

  • Chapter 8: Further Applications of Integration
    • 8.1 Arc Length (3)
    • 8.2 Area of a Surface of Revolution
    • 8.3 Applications to Physics and Engineering (3)
    • 8.4 Applications to Economics and Biology (1)
    • 8.5 Probability (2)
    • Chapter Review

  • Chapter 9: Differential Equations
    • 9.1 Modeling with Differential Equations (3)
    • 9.2 Direction Fields and Euler's Method (4)
    • 9.3 Separable Equations (4)
    • 9.4 Exponential Growth and Decay (3)
    • 9.5 The Logistic Equation (1)
    • 9.6 Linear Equations
    • 9.7 Predator-Prey Systems
    • Chapter Review

  • Chapter 10: Parametric Equations and Polar Coordinates
    • 10.1 Curves Defined by Parametric Equations (6)
    • 10.2 Calculus with Parametric Curves (4)
    • 10.3 Polar Coordinates
    • 10.4 Areas and Lengths in Polar Coordinates (1)
    • 10.5 Conic Sections
    • 10.6 Comic Sections in Polar Coordinates
    • Chapter Review

  • Chapter 11: Infinite Sequences and Series
    • 11.1 Sequences (8)
    • 11.2 Series (9)
    • 11.3 The Integral Test and Estimates of Suns (5)
    • 11.4 The Comparison Tests (8)
    • 11.5 Alternating Series (5)
    • 11.6 Absolute Convergence and the Ratio and Root Tests (4)
    • 11.7 Strategy for Testing Series
    • 11.8 Power Series (6)
    • 11.9 Representations of Functions as Power Series (7)
    • 11.10 Taylor and Maclaurin Series (8)
    • 11.11 The Binomial Series (3)
    • 11.12 Applications of Taylor Polynomials (3)
    • Chapter Review

  • Chapter 12: Vectors and the Geometry of Space
    • 12.1 Three-Dimensional Coordinate Systems (4)
    • 12.2 Vectors (4)
    • 12.3 The Dot Product (7)
    • 12.4 The Cross Product (6)
    • 12.5 Equations of Lines and Planes (8)
    • 12.6 Cylinders and Quadric Surfaces (1)
    • 12.7 Cylindrical and Spherical Coordinates (1)
    • Chapter Review

  • Chapter 13: Vector Functions
    • 13.1 Vector Functions and Space Curves (4)
    • 13.2 Derivatives and Integrals of Vector Functions (5)
    • 13.3 Arc Length and Curvature (7)
    • 13.4 Motion in Space: Velocity and Acceleration (3)
    • Chapter Review

  • Chapter 14: Partial Derivatives
    • 14.1 Functions of Several Variables (5)
    • 14.2 Limits and Continuity (6)
    • 14.3 Partial Derivatives (10)
    • 14.4 Tangent Planes and Linear Approximations (5)
    • 14.5 The Chain Rule (5)
    • 14.6 Directional Derivatives and the Gradient Vector (6)
    • 14.7 Maximum and Minimum Values (6)
    • 14.8 Lagrange Multipliers (5)
    • Chapter Review

  • Chapter 15: Multiple Integrals
    • 15.1 Double Integrals over Rectangles (2)
    • 15.2 Iterated Integrals (5)
    • 15.3 Double Integrals over General Regions (7)
    • 15.4 Double Integrals in Polar Coordinates (4)
    • 15.5 Applications of Double Intergrals (3)
    • 15.6 Surface Area (3)
    • 15.7 Triple Integrals (5)
    • 15.8 Triple Integrals in Cylindrical and Spherical Coordinates (5)
    • 15.9 Change of Variables in Multiple Integrals (2)
    • Chapter Review

  • Chapter 16: Vector Calculus
    • 16.1 Vector Fields (6)
    • 16.2 Line Integrals (6)
    • 16.3 The Fundamental Theorem for Line Integrals (6)
    • 16.4 Green's Theorem (2)
    • 16.5 Curl and Divergence (3)
    • 16.6 Parametric Surfaces and Their Areas (4)
    • 16.7 Surface Integrals (7)
    • 16.8 Stokes' Theorem (2)
    • 16.9 The Divergence Theorem (4)
    • 16.10 Summary
    • Chapter Review

  • Chapter 17: Second- Order Differential Equations
    • 17.1 Second- Order Linear Equations
    • 17.2 Nonhomogeneous Linear Equations
    • 17.3 Applications of Second-Order Differential Equations
    • 17.4 Series Solutions
    • Chapter Review

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Functions and Models
1.1 18 002 006 008 010 020 022 024 026 030 042 044 048 050 052 058 062 064 066
1.2 6 002 004 010 012 014 018
1.3 14 002 006 032 036 038 040 044 046 050 052 054 058 062 064
1.4 2 004 026
1.5 4 013 018 020 022
1.6 18 004 006 008 010 012 014 016 018 024 026 028 036 038 040 050 052 054 060
Chapter 2: Limits and Derivatives
2.1 1 006
2.2 3 004 016 024
2.3 12 002 012 014 016 018 022 024 026 028 036 041 044
2.4 1 014
2.5 6 002 004 008 032 040 042
2.6 9 004 014 018 020 026 030 031 042 044
2.7 6 010 014 018 020 022 028
2.8 11 004 008 014 016 018 020 022 024 026 030 036
2.9 6 002 004 020 026 028 038
Chapter 3: Differentiation Rules
3.1 13 004 006 008 010 014 016 022 026 030 036 046 049 050
3.2 16 004 006 008 010 014 018 020 022 024 026 028 032 034 036 038 042
3.3 5 002 008 010 018 020
3.4 14 002 004 006 008 010 012 022 026 030 032 034 036 040 046
3.5 27 002 004 008 012 014 016 018 020 022 024 025 028 030 032 034 036 038 040 044 048 054 056 058 060 064 066 078
3.6 15 002 008 010 012 014 016 020 025 026 028 030 032 044 066 069
3.7 3 002 030 032
3.8 19 002 004 006 008 010 012 016 018 020 022 024 028 036 038 040 042 044 048 050
3.10 21 002 004 006 008 009 010 012 014 016 018 019 020 022 024 026 028 030 032 034 036 038
3.11 8 004 005 008 012 024 032 042 044
Chapter 4: Applications of Differentiation
4.1 15 004 006 016 026 030 032 034 036 042 044 048 050 052 058 064
4.2 3 008 012 014
4.3 12 008 012 014 018 020 032 034 036 038 040 044 058
4.4 16 002 004 008 010 018 023 030 036 038 042 046 048 054 056 070 072
4.6 1 018
4.7 22 002 004 006 008 010 012 017 018 020 022 026 034 036 040 042 044 046 048 050 054 056 058
4.8 6 010 014 016 018 020 022
4.9 10 006 008 012 014 016 024 026 032 036 038
4.10 22 006 008 010 012 016 020 022 028 032 034 036 044 046 060 062 068 070 072 073 074 076 078
Chapter 5: Integrals
5.R 1 066
5.1 6 002 004 008 014 016 022
5.2 17 004 006 008 010 022 024 032 034 036 038 042 048 049 050 056 058 060
5.3 18 002 004 008 012 014 022 023 024 028 030 034 036 046 054 058 060 066 068
5.4 4 009 010 014 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 039 040 043 044 048 053 054 055 056 057 058 059 060 061 062 064
5.5 27 002 004 006 008 010 012 016 018 020 022 034 035 036 040 046 048 050 052 054 060 062 064 068 072 074 078 080
Chapter 6: Applications of Integration
6.1 12 002 004 006 010 024 034 041 042 044 046 048 049
6.2 18 006 008 010 014 016 032 042 046 048 050 052 054 056 058 060 064 066 068
6.3 14 004 006 010 012 014 016 018 020 022 030 032 038 040 042
6.4 9 004 008 012 014 016 018 020 024 030
6.5 6 004 006 008 010 014 016
Chapter 7: Techniques of Integration
7.1 17 002 003 004 006 007 008 010 012 014 016 020 022 028 030 032 038 060
7.2 12 001 003 004 007 009 011 012 019 022 030 036 064
7.3 6 003 004 007 013 020 025
7.4 9 008 012 020 028 036 038 040 048 068
7.6 3 006 017 026
7.7 10 002 004 008 014 020 022 032 034 036 040
7.8 12 002 006 008 012 019 024 028 042 044 050 052 054
Chapter 8: Further Applications of Integration
8.1 3 004 022 034
8.3 3 012 022 024
8.4 1 012
8.5 2 008 012
Chapter 9: Differential Equations
9.1 3 004 010 012
9.2 4 004 006 022 024
9.3 4 010 014 036 040
9.4 3 002 008 012
9.5 1 008
Chapter 10: Parametric Equations and Polar Coordinates
10.1 6 012 016 020 022 024 040
10.2 4 006 012 033 044
10.4 1 032
Chapter 11: Infinite Sequences and Series
11.1 8 012 016 018 020 026 032 040 056
11.2 9 014 016 020 022 026 027 050 062 068
11.3 5 002 004 020 023 032
11.4 8 008 010 012 014 016 018 026 036
11.5 5 002 010 014 028 030
11.6 4 002 008 030 032
11.8 6 004 010 016 030 036 040
11.9 7 004 006 008 016 018 024 028
11.10 8 012 038 044 046 048 056 058 060
11.11 3 004 016 018
11.12 3 010 026 030
Chapter 12: Vectors and the Geometry of Space
12.1 4 004 010 036 042
12.2 4 004 018 028 034
12.3 7 002 004 006 012 018 046 048
12.4 6 010 012 024 030 032 036
12.5 8 008 020 024 030 032 036 038 072
12.6 1 046
12.7 1 056
Chapter 13: Vector Functions
13.1 4 006 020 022 024
13.2 5 010 022 024 026 032
13.3 7 002 004 009 016 020 022 026
13.4 3 010 026 028
Chapter 14: Partial Derivatives
14.1 5 002 010 054 056 058
14.2 6 006 008 009 014 018 038
14.3 10 006 008 014 018 036 038 042 048 066 090
14.4 5 004 006 019 032 034
14.5 5 014 022 032 038 040
14.6 6 018 020 024 025 030 034
14.7 6 010 028 030 032 038 042
14.8 5 004 006 008 018 038
Chapter 15: Multiple Integrals
15.1 2 002 006
15.2 5 004 006 012 026 028
15.3 7 002 004 008 018 026 044 056
15.4 4 014 022 024 030
15.5 3 002 010 014
15.6 3 002 008 024
15.7 5 004 008 012 019 038
15.8 5 002 004 008 013 020
15.9 2 002 006
Chapter 16: Vector Calculus
16.1 6 016 018 022 024 030 032
16.2 6 002 010 018 020 032 034
16.3 6 002 004 006 008 014 016
16.4 2 008 018
16.5 3 003 006 016
16.6 4 012 014 016 022
16.7 7 006 010 012 014 022 024 044
16.8 2 008 010
16.9 4 004 006 014 020
Chapter 17: Second- Order Differential Equations
17 0  
Total 841 (34)