Calculus I with Integrated Precalculus 1st edition

Laura Taalman
Publisher: Macmillan Learning

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A N/A
Higher Education Multi-Term \$52.99 \$84.99
High School N/A N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 0: Functions and Precalculus
• 0.1: Numbers and Sets (20)
• 0.2: Equations (20)
• 0.3: Inequalities (20)
• 0.4: Functions and Graphs (21)
• 0.5: A Basic Library of Functions (14)
• 0.6: Operations, Transformations, and Inverses (20)
• 0.7: Logic and Mathematical Thinking (31)
• 0: Chapter Review (4)
• 0: Self-Test

• Chapter 1: Limits
• 1.1: An Intuitive Introduction to Limits (11)
• 1.2: Formal Definition of a Limit (13)
• 1.3: Delta-Epsilon Proofs (16)
• 1.4: Continuity and Its Consequences (19)
• 1.5: Limit Rules and Calculating Basic Limits (17)
• 1.6: Infinite Limits and Indeterminate Forms (15)
• 1: Chapter Review (1)
• 1: Self-Test

• Chapter 2: Derivatives
• 2.1: An Intuitive Introduction to Derivatives (7)
• 2.2: Formal Definition of the Derivative (27)
• 2.3: Rules for Calculating Basic Derivatives (23)
• 2.4: The Chain Rule and Implicit Differentiation (16)
• 2: Chapter Review
• 2: Self-Test

• Chapter 3: Applications of the Derivative
• 3.1: The Mean Value Theorem (7)
• 3.2: The First Derivative and Curve Sketching (5)
• 3.3: The Second Derivative and Curve Sketching (10)
• 3.4: Optimization (10)
• 3.5: Related Rates (10)
• 3: Chapter Review (2)
• 3: Self-Test

• Chapter 4: Calculus with Power, Polynomial, and Rational Functions
• 4.1: Advanced Algebraic Techniques (14)
• 4.2: Power Functions (11)
• 4.3: Polynomial Functions (17)
• 4.4: Rational Functions (20)
• 4: Chapter Review
• 4: Self-Test

• Chapter 5: Calculus with Exponential and Logarithmic Functions
• 5.1: Defining Exponential and Logarithmic Functions (14)
• 5.2: Limits of Exponential and Logarithmic Functions (6)
• 5.3: Derivatives of Exponential and Logarithmic Functions (14)
• 5.4: Applications of Exponential Functions (20)
• 5.5: L'Hôpital's Rule (36)
• 5: Chapter Review
• 5: Self-Test

• Chapter 6: Calculus with Trigonometric and Inverse Trigonometric Functions
• 6.1: Defining the Trigonometric Functions (14)
• 6.2: Trigonometric Identities (14)
• 6.3: Limits and Derivatives of Trigonometric Functions (12)
• 6.4: Inverse Trigonometric Functions (13)
• 6: Chapter Review (4)
• 6: Self-Test

• Chapter 7: Definite Integrals
• 7.1: Addition and Accumulation (18)
• 7.2: Riemann Sums (11)
• 7.3: Definite Integrals (21)
• 7.4: Indefinite Integrals (39)
• 7.5: The Fundamental Theorem of Calculus (21)
• 7.6: Areas and Average Values (20)
• 7.7: Functions Defined by Integrals (8)
• 7: Chapter Review (9)
• 7: Self-Test

• Chapter 8: Techniques of Integration
• 8.1: Integration by Substitution (21)
• 8.2: Integration by Parts (22)
• 8.3: Partial Fractions and Other Algebraic Techniques (14)
• 8.4: Trigonometric Integrals (20)
• 8.5: Trigonometric Substitution (13)
• 8.6: Improper Integrals (16)
• 8.7: Numerical Integration (7)
• 8: Chapter Review (9)
• 8: Self-Test

• Chapter 9: Applications of Integration
• 9.1: Volumes by Slicing (19)
• 9.2: Volumes by Shells (20)
• 9.3: Arc Length and Surface Area (19)
• 9.4: Real-World Applications of Integration (17)
• 9.5: Differential Equations (20)
• 9: Chapter Review (4)
• 9: Self-Test

Macmillan Learning and WebAssign have partnered to deliver a comprehensive and flexible suite of resources for Taalman, Calculus I with Integrated Precalculus. Combining a powerful online homework system with Macmillan's esteemed textbook and interactive content, WebAssign extends and enhances the classroom experience for instructors and students.

Features:
• Over 1,000 algorithmically generated online homework questions taken directly from the text.
• A full, interactive, and easily navigated e-book with highlighting and note-taking features, linked to the homework questions.
• Detailed solutions to all homework questions, available to students at your discretion. The solutions use the same algorithmic values assigned in the problem, further driving problem-solving mastery.
• Tutorial questions that break up problems into segments, helping students work through learning a concept.
• Ready-to-use Course Pack assignments curated from the full question bank, greatly decreasing your preparation time.
• CalcClips, whiteboard tutorial videos that provide a step-by-step walkthrough illustrating key concepts using examples adapted from the book.
• A comprehensive suite of Instructor Resources, including Clicker Questions, Image Slides, Instructor Resource Manual, Instructor Solutions Manual, Lecture Slides, Practice Quizzes, and printable Test Bank.
• Additional Student Resources that you can optionally make available in your WebAssign course, including Maple and Mathematica software manuals and the Student Solutions Manual.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 0: Functions and Precalculus
0.R 4 006 010 011 012 018 024 028 030
0.1 20 001 020 024 028 030 032 036 038 040 042 044 048 050 054 056 062 064 068 072 080
0.2 20 001 020 024 028 030 032 036 038 040 042 044 048 050 054 056 060 064 070 072 078
0.3 20 001 020 024 028 030 032 036 038 040 042 044 048 050 052 054 056 060 062 064 066
0.4 21 001 006 007 027 028 029 031 032 033 036 038 039 040 041 042 049 073 075 076 077 078
0.5 14 001 003 011 014 016 022 024 026 028 030 032 033 034 039 044 048 050 056 060 062
0.6 20 001 024.Tutorial 030 031 032 033 034 035 067 069 071 072 073 074 075 076 078 079 080 084
0.7 31 001 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046
Chapter 1: Limits
1.R 1 002 004 006 008 010 012 014 020
1.1 11 001 008 012 015 022 024 028 032 036 039 040 043 044 045 046 056 060 069 070 071
1.2 13 001 004 007 008 009 010 011 015 019 022 023 024 028 032 036 040 042 044 056 066
1.3 16 001 020 023 024 026 028 032 033 036 042 043 045 046 047 053 061 063 065 066 072
1.4 19 001 007 008 009 010 011 012 024 035 036 040 041 042 052 053 054 058 062 067 072
1.5 17 001 013 016 017 021 022 023 024 026 032 043 044 046 049 050 051 054 057 058 060
1.6 15 007 008 009 010 023 024 026 027 028 030 032 040 042 044 046 048 050 052 053 057
Chapter 2: Derivatives
2.R 002 004 010 012 016 018 022 024
2.1 7 001 024 028 032 035 036 037 038 043 044 045 046 047 048 050 055
2.2 27 001 027 028 029 030 032 038 039 041 042 045 049 050 051 052 061 062 063 064 065 071 072 073 074 075 076 078
2.3 23 012 022 029 030 031 032 033 034 035 036 037 038 039 040 041 042 046 060 071 072 075 076 081
2.4 16 001 010 016 020 021 022 024 026 031 034 035 036 044 050 056 060 063 064 065 066 069 070 071 084
Chapter 3: Applications of the Derivative
3.R 2 003 004 006 010 011 012 016 018
3.1 7 001 006 016 018 020 024 026 031 032 034 036 038 043 044 045 046 048 050 056 058
3.2 5 001 014 020 024 031.Tutorial 032.Tutorial 033 034 039 040 041 042 044 046 048 050 054 056 060 064
3.3 10 001 024 028 033 034 035 036 041 042 043 044 045 046 048 056 060 064 071 072
3.4 10 001 013 014 016 018 020 023 025 026 027 028 029 030 032 039 040 044 045 046 056
3.5 10 001 004 006 008 021 022 024 028 032 036 037 038 039 042 043 046 052 053 057 060
Chapter 4: Calculus with Power, Polynomial, and Rational Functions
4.R 004 008 012 016 020 024 028 032
4.1 14 001 018 024 028 030 034 035 036 037 042 048 050 054 056 060 064 072 078 080 084
4.2 11 012 024 028 032 040 042 044 050 056 060 063 064 073 078 080 082
4.3 17 001 004 008 012 016 018 020 024 028 032 036 040 044 048 050 054 056 060 064 068 069 070 072
4.4 20 001 020 024 028 030 032 034 036 040 042 044 048 050 054 056 060 064 066 068 070
Chapter 5: Calculus with Exponential and Logarithmic Functions
5.R 002 004 008 012 016 018 024 030
5.1 14 001 012 016 024 028 032 034 036 041 042 043 048 054 056 060 066 078 080 082 084
5.2 6 001 004 014 021 022 040 042 043 044 050 052 054 056 058 064 066 072 074 080 082
5.3 14 001 013 017 018 019 020 021 023 026 031 034 047 050 053 057 058 072 084 086
5.4 20 001 014 016 020 022 024 028 030 032 036 038 040 048 049 050 051 052 053 054 055
5.5 36 015 016 018 020 021 023 024 026 028 029 031 032 033 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 057 059 060
Chapter 6: Calculus with Trigonometric and Inverse Trigonometric Functions
6.R 4 004 015 016 017 018 024 032 036
6.1 14 001 006 016 028 032 036 040 044 048 053 054 055 056 068 072 078 088 091 092 094
6.2 14 001 018 023 024 025 028 030 032 034 036 038 040 042 044 046 048 050 051 054 060
6.3 12 001 030 032 036 038 049 050 052 055 056 062 064 067 068 070 074 078 084 085 086 088 090
6.4 13 001 004 024 029 030 031 032 038 042 048 054 060 064 072 074 080 084 088 089 090
Chapter 7: Definite Integrals
7.R 9 005 017 018 020 028 029 030 032 033
7.1 18 029 030 031 032 034 035 036 037 038 039 040 044 045 047 048 050 051 052
7.2 11 027 029 030 032 033 039 040 041 042 043 044
7.3 21 021 022 023 024.Tutorial 025 027 029 030 031 034 037 038 041 042 047 048 049 050 051 052 501.XP
7.4 39 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 057 059 060 061 062
7.5 21 019 020 021 022 023 025 029 033 034 035 039 040 041 044 045 046 048 057 059 060.Tutorial 063
7.6 20 028 030 031 034 036 037 041 042 043 045 047 056 057 058 061 063 064 068 069 071
7.7 8 028 030 035 036 042 045 050 053
Chapter 8: Techniques of Integration
8.R 9 006 007 008 012.Tutorial 014 015 020 021 044
8.1 21 021 022 023 025 030 032 041 042 043 051 053 054 058 059 060 066 071 080 084 501.XP 502.XP
8.2 22 027 030 032 035 037 039 044 046 047 048 052 053 055 056 057 060 061 063 070 071 075 501.XP
8.3 14 017 018 021 027 029.Tutorial 030 032 033 034 035 036 037 038 039
8.4 20 021 023 026 034 035 036 037 039 044 045 046 048 050 051 060 067 069 071.Tutorial 072 076
8.5 13 043 044 046 047 053 054 055 056 058 061 062 069 071
8.6 16 021 022 023 024 033 035 037 040.Tutorial 042 045 047 049 052 055 058 061
8.7 7 023 025 029 030 033 035 037
Chapter 9: Applications of Integration
9.R 4 009b.Tutorial 010 019 501.XP
9.1 19 027 028 031 035 036 038 040 041 042 043 044 047 048 049 050 051 052 053 054
9.2 20 029 030 031 032 033 034 035 036 037 038 039 040 041 043 044 050 053 057 061 501.XP
9.3 19 021 022 027 028 031 032 033 037 038 039 040 041 043.Tutorial 044 063 066 067 068 071
9.4 17 019 020 023 042 043 044 045 046 049 050 052 053 056 059 065 066 067
9.5 20 019 020 021 022 023 024 029 030 032 033 034 035 036 037 041 042 045 049 050 051
Total 936 (225)