Mathematical Statistics with Applications 7th edition

Textbook Cover

Dennis D. Wackerly, William Mendenhall III, and Richard L. Scheaffer
Publisher: Cengage Learning

enhanced content

Cengage Unlimited

Included in a Cengage Unlimited subscription. Learn More

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


Access is contingent on use of this textbook in the instructor's classroom.

  • Chapter 1: What Is Statistics?
    • 1: Concept Explorations (1)
    • 1: Precalculus Review (10)
    • 1.1: Introduction
    • 1.2: Characterizing a Set of Measurements: Graphical Methods (5)
    • 1.3: Characterizing a Set of Measurements: Numerical Methods (8)
    • 1.4: How Inferences Are Made
    • 1.5: Theory and Reality
    • 1.6: Summary
    • 1: Supplementary Exercises (8)
    • 1: Concept Questions (10)

  • Chapter 2: Probability
    • 2: Concept Explorations (1)
    • 2: Precalculus Review (13)
    • 2.1: Introduction
    • 2.2: Probability and Inference
    • 2.3: A Review of Set Notation (6)
    • 2.4: A Probabilistic Model for an Experiment: The Discrete Case (9)
    • 2.5: Calculating the Probability of an Event: The Sample-Point Method (5)
    • 2.6: Tools for Counting Sample Points (20)
    • 2.7: Conditional Probability and the Independence of Events (8)
    • 2.8: Two Laws of Probability (14)
    • 2.9: Calculating the Probability of an Event: The Event-Composition Method (6)
    • 2.10: The Law of Total Probability and Bayes' Rule (6)
    • 2.11: Numerical Events and Random Variables (2)
    • 2.12: Random Sampling
    • 2.13: Summary
    • 2: Supplementary Exercises (20)
    • 2: Concept Questions (24)

  • Chapter 3: Discrete Random Variables and Their Probability Distributions
    • 3: Concept Explorations (1)
    • 3: Precalculus and Calculus Review (19)
    • 3.1: Basic Definition
    • 3.2: The Probability Distribution for a Discrete Random Variable (6)
    • 3.3: The Expected Value of a Random Variable or a Function of a Random Variable (11)
    • 3.4: The Binomial Probability Distribution (17)
    • 3.5: The Geometric Probability Distribution (12)
    • 3.6: The Negative Binomial Probability Distribution (Optional) (7)
    • 3.7: The Hypergeometric Probability Distribution (9)
    • 3.8: The Poisson Probability Distribution (13)
    • 3.9: Moments and Moment-Generating Functions (10)
    • 3.10: Probability-Generating Functions (Optional) (2)
    • 3.11: Tchebysheff's Theorem (7)
    • 3.12: Summary
    • 3: Supplementary Exercises (19)
    • 3: Concept Questions (26)

  • Chapter 4: Continuous Variables and Their Probability Distributions
    • 4: Concept Explorations
    • 4: Calculus Review (15)
    • 4.1: Introduction
    • 4.2: The Probability Distribution for a Continuous Random Variable (10)
    • 4.3: Expected Values for Continuous Random Variables (9)
    • 4.4: The Uniform Probability Distribution (10)
    • 4.5: The Normal Probability Distribution (10)
    • 4.6: The Gamma Probability Distribution (13)
    • 4.7: The Beta Probability Distribution (7)
    • 4.8: Some General Comments
    • 4.9: Other Expected Values (5)
    • 4.10: Tchebysheff's Theorem (4)
    • 4.11: Expectations of Discontinuous Functions and Mixed Probability Distributions (Optional) (4)
    • 4.12: Summary
    • 4: Supplementary Exercises (18)
    • 4: Concept Questions (6)

  • Chapter 5: Multivariate Probability Distributions
    • 5: Concept Explorations (1)
    • 5: Precalculus and Calculus Review (11)
    • 5.1: Introduction
    • 5.2: Bivariate and Multivariate Probability Distributions (10)
    • 5.3: Marginal and Conditional Probability Distributions (12)
    • 5.4: Independent Random Variables (15)
    • 5.5: The Expected Value of a Function of Random Variables
    • 5.6: Special Theorems (9)
    • 5.7: The Covariance of Two Random Variables (7)
    • 5.8: The Expected Value and Variance of Linear Functions of Random Variables (8)
    • 5.9: The Multinomial Probability Distribution (6)
    • 5.10: The Bivariate Normal Distribution (Optional)
    • 5.11: Conditional Expectations (6)
    • 5.12: Summary
    • 5: Supplementary Exercises (11)
    • 5: Concept Questions (6)

  • Chapter 6: Functions of Random Variables
    • 6: Concept Explorations
    • 6: Precalculus and Calculus Review (9)
    • 6.1: Introduction
    • 6.2: Finding the Probability Distribution of a Function of Random Variables
    • 6.3: The Method of Distribution Functions (11)
    • 6.4: The Method of Transformations (7)
    • 6.5: The Method of Moment-Generating Functions (13)
    • 6.6: Multivariable Transformations Using Jacobians (Optional)
    • 6.7: Order Statistics (10)
    • 6.8: Summary
    • 6: Supplementary Exercises (12)
    • 6: Concept Questions

  • Chapter 7: Sampling Distributions and the Central Limit Theorem
    • 7: Concept Explorations (1)
    • 7: Precalculus Review (13)
    • 7.1: Introduction
    • 7.2: Sampling Distributions Related to the Normal Distribution (12)
    • 7.3: The Central Limit Theorem (12)
    • 7.4: A Proof of the Central Limit Theorem (Optional)
    • 7.5: The Normal Approximation to the Binomial Distribution (11)
    • 7.6: Summary
    • 7: Supplementary Exercises (9)
    • 7: Concept Questions (4)
    • 7: Labs (6)

  • Chapter 8: Estimation
    • 8: Concept Explorations (1)
    • 8: Precalculus and Calculus Review (15)
    • 8.1: Introduction
    • 8.2: The Bias and Mean Square Error of Point Estimators (10)
    • 8.3: Some Common Unbiased Point Estimators
    • 8.4: Evaluating the Goodness of a Point Estimator (9)
    • 8.5: Confidence Intervals (6)
    • 8.6: Large-Sample Confidence Intervals (10)
    • 8.7: Selecting the Sample Size (5)
    • 8.8: Small-Sample Confidence Intervals for μ and μ1μ2 (9)
    • 8.9: Confidence Intervals for σ2 (5)
    • 8.10: Summary
    • 8: Supplementary Exercises (13)
    • 8: Concept Questions (10)

  • Chapter 9: Properties of Point Estimators and Methods of Estimation
    • 9: Concept Explorations
    • 9: Precalculus and Calculus Review (9)
    • 9.1: Introduction
    • 9.2: Relative Efficiency (4)
    • 9.3: Consistency (11)
    • 9.4: Sufficiency (10)
    • 9.5: The Rao–Blackwell Theorem and Minimum-Variance Unbiased Estimation (7)
    • 9.6: The Method of Moments (6)
    • 9.7: The Method of Maximum Likelihood (10)
    • 9.8: Some Large-Sample Properties of Maximum-Likelihood Estimators (Optional) (2)
    • 9.9: Summary
    • 9: Supplementary Exercises (5)
    • 9: Concept Questions

  • Chapter 10: Hypothesis Testing
    • 10: Concept Explorations (1)
    • 10: Precalculus Review (6)
    • 10.1: Introduction
    • 10.2: Elements of a Statistical Test (5)
    • 10.3: Common Large-Sample Tests (10)
    • 10.4: Calculating Type II Error Probabilities and Finding the Sample Size for Z Tests (4)
    • 10.5: Relationships Between Hypothesis-Testing Procedures and Confidence Intervals (3)
    • 10.6: Another Way to Report the Results of a Statistical Test: Attained Significance Levels, or p-Values (4)
    • 10.7: Some Comments on the Theory of Hypothesis Testing
    • 10.8: Small-Sample Hypothesis Testing for μ and μ1μ2 (9)
    • 10.9: Testing Hypotheses Concerning Variances (5)
    • 10.10: Power of Tests and the Neyman–Pearson Lemma (8)
    • 10.11: Likelihood Ratio Tests (3)
    • 10.12: Summary
    • 10: Supplementary Exercises (8)
    • 10: Concept Questions (10)

  • Chapter 11: Linear Models and Estimation by Least Squares
    • 11: Concept Explorations (2)
    • 11: Precalculus and Calculus Review (16)
    • 11.1: Introduction
    • 11.2: Linear Statistical Models
    • 11.3: The Method of Least Squares (6)
    • 11.4: Properties of the Least-Squares Estimators: Simple Linear Regression (4)
    • 11.5: Inferences Concerning the Parameters βi (6)
    • 11.6: Inferences Concerning Linear Functions of the Model Parameters: Simple Linear Regression (4)
    • 11.7: Predicting a Particular Value of Y by Using Simple Linear Regression (3)
    • 11.8: Correlation (5)
    • 11.9: Some Practical Examples (3)
    • 11.10: Fitting the Linear Model by Using Matrices (2)
    • 11.11: Linear Functions of the Model Parameters: Multiple Linear Regression
    • 11.12: Inferences Concerning Linear Functions of the Model Parameters: Multiple Linear Regression (4)
    • 11.13: Predicting a Particular Value of Y by Using Multiple Regression (3)
    • 11.14: A Test for H0 : βg + 1 = βg + 2 = … = βk = 0 (8)
    • 11.15: Summary and Concluding Remarks
    • 11: Supplementary Exercises (7)
    • 11: Concept Questions (8)

  • Chapter 12: Considerations in Designing Experiments
    • 12: Concept Explorations (1)
    • 12: Precalculus Review (7)
    • 12.1: The Elements Affecting the Information in a Sample
    • 12.2: Designing Experiments to Increase Accuracy (4)
    • 12.3: The Matched-Pairs Experiment (5)
    • 12.4: Some Elementary Experimental Designs (6)
    • 12.5: Summary
    • 12: Supplementary Exercises (5)
    • 12: Concept Questions (4)

  • Chapter 13: The Analysis of Variance
    • 13: Concept Explorations (1)
    • 13: Precalculus Review (10)
    • 13.1: Introduction
    • 13.2: The Analysis of Variance Procedure (1)
    • 13.3: Comparison of More Than Two Means: Analysis of Variance for a One-Way Layout
    • 13.4: An Analysis of Variance Table for a One-Way Layout (7)
    • 13.5: A Statistical Model for the One-Way Layout (2)
    • 13.6: Proof of Additivity of the Sums of Squares and E(MST) for a One-Way Layout (Optional)
    • 13.7: Estimation in the One-Way Layout (8)
    • 13.8: A Statistical Model for the Randomized Block Design (2)
    • 13.9: The Analysis of Variance for a Randomized Block Design (6)
    • 13.10: Estimation in the Randomized Block Design (3)
    • 13.11: Selecting the Sample Size (2)
    • 13.12: Simultaneous Confidence Intervals for More Than One Parameter (3)
    • 13.13: Analysis of Variance Using Linear Models (2)
    • 13.14: Summary
    • 13: Supplementary Exercises (11)
    • 13: Concept Questions (4)
    • 13: Labs (5)

  • Chapter 14: Analysis of Categorical Data
    • 14: Concept Explorations (1)
    • 14: Precalculus and Calculus Review (10)
    • 14.1: A Description of the Experiment
    • 14.2: The Chi-Square Test
    • 14.3: A Test of a Hypothesis Concerning Specified Cell Probabilities: A Goodness-of-Fit Test (6)
    • 14.4: Contingency Tables (5)
    • 14.5: r × c Tables with Fixed Row or Column Totals (5)
    • 14.6: Other Applications
    • 14.7: Summary and Concluding Remarks
    • 14: Supplementary Exercises (6)
    • 14: Concept Questions (4)

  • Chapter 15: Nonparametric Statistics
    • 15: Concept Explorations (1)
    • 15: Precalculus Review (7)
    • 15.1: Introduction
    • 15.2: A General Two-Sample Shift Model
    • 15.3: The Sign Test for a Matched-Pairs Experiment (5)
    • 15.4: The Wilcoxon Signed-Rank Test for a Matched-Pairs Experiment (5)
    • 15.5: Using Ranks for Comparing Two Population Distributions: Independent Random Samples
    • 15.6: The Mann–Whitney U Test: Independent Random Samples (4)
    • 15.7: The Kruskal–Wallis Test for the One-Way Layout (4)
    • 15.8: The Friedman Test for Randomized Block Designs (5)
    • 15.9: The Runs Test: A Test for Randomness (3)
    • 15.10: Rank Correlation Coefficient (4)
    • 15.11: Some General Comments on Nonparametric Statistical Tests
    • 15: Supplementary Exercises (9)
    • 15: Concept Questions (8)

  • Chapter 16: Introduction to Bayesian Methods for Inference
    • 16: Concept Explorations
    • 16: Precalculus and Calculus Review (5)
    • 16.1: Introduction
    • 16.2: Bayesian Priors, Posteriors, and Estimators (7)
    • 16.3: Bayesian Credible Intervals (3)
    • 16.4: Bayesian Tests of Hypotheses (3)
    • 16.5: Summary and Additional Comments
    • 16: Concept Questions

  • Chapter PJT: Project
    • PJT.1: Project (4)


In their bestselling Mathematical Statistics With Applications, 7th edition, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. The WebAssign component for this text engages students with an interactive eTextbook and several other resources.

Instructor Product Features

  • Instructor Resources include Instructional Lecture Videos, hosted by Dana Mosely. These topic-specific videos provide explanations of key concepts, examples, and applications in a lecture-based format. Lecture PowerPoint slides are also available.

Student Learning Tools

  • Read It links under each question quickly jump to the corresponding section of a complete, interactive eTextbook that lets students highlight and take notes as they read.
  • Student Resources include Data Analysis Tool Instructions / Tech Guides for the below software. Can be used stand-alone or in conjunction with assessment items (Homework, Labs, or Project Milestones).
    • TI-83/84 and TI-Nspire Calculator
    • Excel
    • JMP
    • Minitab
    • SPSS
    • R
  • Precalculus and Calculus Review is available within each chapter to assign to help close readiness gaps.

Content Available for Statistics

  • View several of the often-available question types in Statistics content here. You can see which questions are available for your specific course below.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
E - End of Section Exercise
CQ - Concept Question
SIP - Stats in Practice Video Question
Lab - Lab
P - Precalculus/Calculus Prerequisite Exercise
PJT - Project Milestone


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter PJT: Project
PJT.1 4 001 002 003 004
Chapter 1: What Is Statistics?
1.CE 1 001.SIP
1.CQ 10 001 002 003 004 005 006 007 008 009 010
1.P 10 001 002 003 004 005 006 007 008 009 010
1.SE 8 023 025 027 029 031 033 035 037
1.2 5 002 003 005 006 007
1.3 8 009 011 013 015 017 019 020 021
Chapter 2: Probability
2.CE 1 001.SIP
2.CQ 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024
2.P 13 001 002 003 004 005 006 007 008 009 010 011 012 013
2.SE 20 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181
2.3 6 001 002 003 005 007 008
2.4 9 009 011 013 014 015 017 019 021 023
2.5 5 025 027 029 031 033
2.6 20 035 037 038 039 041 043 045 047 049 051 053 055 057 058 059 061 063 065 067 069
2.7 8 071 072 073 075 077 079 081 083
2.8 14 085 087 089 091 093 095 097 099 101 102 103 105 107 109
2.9 6 111 113 115 117 119 121
2.10 6 125 129 131 133 135 137
2.11 2 139 141
Chapter 3: Discrete Random Variables and Their Probability Distributions
3.CE 1 001.SIP
3.CQ 26 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
3.P 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
3.SE 19 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217
3.2 6 001 003 005 007 009 011
3.3 11 013 015 017 019 021 023 025 027 029 031 033
3.4 17 035 037 039 040 041 043 045 047 049 051 053 055 057 059 061 063 065
3.5 12 067 069 071 073 075 077 079 081 083 085 087 089
3.6 7 090 091 092 093 095 097 099
3.7 9 103 105 107 109 111 113 115 117 119
3.8 13 121 123 125 127 129 130 131 133 135 137 139 141 143
3.9 10 145 147 149 151 153 155 157 159 161 163
3.10 2 164 165
3.11 7 167 169 171 173 175 177 179
Chapter 4: Continuous Variables and Their Probability Distributions
4.CQ 6 001 002 003 004 005 006
4.P 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
4.SE 18 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195
4.2 10 001 003 005 007 009 011 013 015 017 019
4.3 9 021 023 025 027 029 031 033 035 037
4.4 10 039 041 043 045 047 049 051 053 055 057
4.5 10 059 061 063 065 067 069 071 073 075 077
4.6 13 081 089 091 093 095 097 099 101 103 105 107 109 111
4.7 7 123 125 127 129 131 133 135
4.9 5 137 139 141 143 145
4.10 4 147 149 151 153
4.11 4 155 156 157 158
Chapter 5: Multivariate Probability Distributions
5.CE 1 001.SIP
5.CQ 6 001 002 003 004 005 006
5.P 11 001 002 003 004 005 006 007 008 009 010 011
5.SE 11 145 147 149 151 153 155 157 158 161 165 166
5.2 10 001 003 004 005 007 009 011 013 015 017
5.3 12 019 021 023 025 027 029 031 033 035 037 039 041
5.4 15 043 045 047 049 051 053 055 057 059 061 063 065 067 069 071
5.6 9 072 073 075 077 079 081 083 085 087
5.7 7 089 091 093 095 097 099 101
5.8 8 103 105 107 109 111 113 115 117
5.9 6 119 121 123 125 126 127
5.11 6 133 135 137 139 141 143
Chapter 6: Functions of Random Variables
6.P 9 001 002 003 004 005 006 007 008 009
6.SE 12 093 095 097 099 101 103 105 107 109 111 113 115
6.3 11 001 003 005 007 009 011 013 015 017 019 021
6.4 7 023 025 026 029 031 033 035
6.5 13 037 039 041 043 045 047 049 051 053 055 057 059 061
6.7 10 073 075 077 079 081 083 085 087 089 090
Chapter 7: Sampling Distributions and the Central Limit Theorem
7.CE 1 001.SIP
7.CQ 4 001 002 003 004
7.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
7.P 13 001 002 003 004 005 006 007 008 009 010 011 012 013
7.SE 9 089 091 093 095 097 099 101 103 105
7.2 12 009 011 013 015 016 019 021 031 033 035 037 039
7.3 12 042 043 045 047 049 051 053 055 057 059 061 063
7.5 11 067 069 071 073 075 077 079 080 083 085 087
Chapter 8: Estimation
8.CE 1 001.SIP
8.CQ 10 001 002 003 004 005 006 007 008 009 010
8.P 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
8.SE 13 104 105 107 109 111 113 115 117 119 121 123 125 126
8.2 10 002 003 005 007 009 011 013 015 017 019
8.4 9 021 023 025 027 029 031 033 035 037
8.5 6 039 041 043 045 047 049
8.6 10 050 056 057 059 061 063 064 065 067 069
8.7 5 071 073 075 077 079
8.8 9 081 083 085 086 087 088 089 091 093
8.9 5 095 097 099 101 103
Chapter 9: Properties of Point Estimators and Methods of Estimation
9.P 9 001 002 003 004 005 006 007 008 009
9.SE 5 103 105 107 109 111
9.2 4 001 003 005 007
9.3 11 015 017 019 021 023 025 027 029 031 033 035
9.4 10 037 039 041 043 045 047 049 051 053 055
9.5 7 056 057 059 061 063 065 067
9.6 6 070 071 073 075 077 079
9.7 10 080 081 083 085 087 089 091 093 095 097
9.8 2 099 101
Chapter 10: Hypothesis Testing
10.CE 1 001.SIP
10.CQ 10 001 002 003 004 005 006 007 008 009 010
10.P 6 001 002 003 004 005 006
10.SE 8 115 117 119 121 123 125 127 129
10.2 5 002 003 005 006 007
10.3 10 017 019 021 023 025 027 029 031 033 035
10.4 4 037 039 041 043
10.5 3 045 047 049
10.6 4 051 053 055 057
10.8 9 061 063 065 067 069 071 073 075 077
10.9 5 079 081 083 085 087
10.10 8 089 091 093 095 097 099 101 103
10.11 3 105 107 109
Chapter 11: Linear Models and Estimation by Least Squares
11.CE 2 001.SIP 002.SIP
11.CQ 8 001 002 003 004 005 006 007 008
11.P 16 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017
11.SE 7 095 097 099 101 103 105 107
11.3 6 001 003 005 009 011 013
11.4 4 016 017 019 021
11.5 6 023 025 027 029 031 033
11.6 4 035 037 039 041
11.7 3 043 045 047
11.8 5 051 053 055 057 059
11.9 3 061 063 065
11.10 2 067 069
11.12 4 071 073 074 075
11.13 3 077 078 079
11.14 8 080 081 083 085 087 089 091 093
Chapter 12: Considerations in Designing Experiments
12.CE 1 001.SIP
12.CQ 4 001 002 003 004
12.P 7 001 002 003 004 005 006 007
12.SE 5 029 031 033 035 037
12.2 4 001 003 005 007
12.3 5 009 011 013 015 017
12.4 6 019 021 022 023 025 027
Chapter 13: The Analysis of Variance
13.CE 1 001.SIP
13.CQ 4 001 002 003 004
13.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
13.P 10 001 002 003 004 005 006 007 008 009 010
13.SE 11 073 075 077 079 081 083 085 087 089 091 093
13.2 1 001
13.4 7 003 005 007 009 011 013 015
13.5 2 017 019
13.7 8 021 023 025 027 029 031 033 035
13.8 2 037 039
13.9 6 041 043 045 047 049 051
13.10 3 053 055 057
13.11 2 059 061
13.12 3 063 065 067
13.13 2 069 071
Chapter 14: Analysis of Categorical Data
14.CE 1 001.SIP
14.CQ 4 001 002 003 004
14.P 10 001 002 003 004 005 006 007 008 009 010
14.SE 6 033 035 037 039 041 043
14.3 6 001 003 005 007 009 011
14.4 5 013 015 017 019 021
14.5 5 023 025 027 029 031
Chapter 15: Nonparametric Statistics
15.CE 1 001.SIP
15.CQ 8 001 002 003 004 005 006 007 008
15.P 7 001 002 003 004 005 006 007
15.SE 9 061 063 065 067 069 071 073 075 077
15.3 5 001 003 005 007 009
15.4 5 011 013 015 017 019
15.6 4 021 023 025 027
15.7 4 029 031 033 035
15.8 5 037 039 041 043 045
15.9 3 047 049 051
15.10 4 053 055 057 059
Chapter 16: Introduction to Bayesian Methods for Inference
16.P 5 001 002 003 004 005
16.2 7 001 002 006 007 008 009 011
16.3 3 015 017 019
16.4 3 021 023 025
Total 1205