Applied CALC 1st edition

Frank Wilson
Publisher: Cengage Learning

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A N/A
High School N/A N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Functions and Linear Models
• 1.1: Functions (28)
• 1.2: Linear Functions (29)

• Chapter 2: Nonlinear Models
• 2.1: Quadratic Function Models (56)
• 2.2: Exponential Function Models (33)

• Chapter 3: The Derivative
• 3.1: Average Rate of Change (32)
• 3.2: Limits and Instantaneous Rates of Change (33)
• 3.3: The Derivative as a Slope: Graphical Methods (20)
• 3.4: The Derivative as a Function: Algebraic Method (32)
• 3.5: Interpreting the Derivative (51)

• Chapter 4: Differentiation Techniques
• 4.1: Basic Derivative Rules (27)
• 4.2: The Product and Quotient Rules (23)
• 4.3: The Chain Rule (24)
• 4.4: Exponential and Logarithmic Rules (26)
• 4.5: Implicit Differentiation (20)

• Chapter 5: Derivative Applications
• 5.1: Maxima and Minima (27)
• 5.2: Applications of Maxima and Minima (30)
• 5.3: Concavity and the Second Derivative (32)
• 5.4: Related Rates (20)

• Chapter 6: The Integral
• 6.1: Indefinite Integrals (22)
• 6.2: Integration by Substitution (22)
• 6.3: Using Sums to Approximate Area (22)
• 6.4: The Definite Integral (28)
• 6.5: The Fundamental Theorem of Calculus (23)

• Chapter 7: Advanced Integration Techniques and Applications
• 7.1: Integration by Parts (24)
• 7.2: Area Between Two Curves (31)
• 7.3: Differential Equations and Applications (20)
• 7.4: Differential Equations: Limited Growth and Logistic Growth Models (20)

• Chapter 8: Multivariable Functions and Partial Derivatives
• 8.1: Multivariable Functions (21)
• 8.2: Partial Derivatives (22)
• 8.3: Multivariable Maxima and Minima (22)
• 8.4: Constrained Maxima and Minima and Applications (15)

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
XP - Extra Problem
SBS - Step by Step

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Functions and Linear Models
1.1 28 001 002 003 004.SBS 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
1.2 29 001 002 003.SBS 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
Chapter 2: Nonlinear Models
2.1 56 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP
2.2 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
Chapter 3: The Derivative
3.1 32 001.SBS 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
3.2 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP
3.3 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
3.4 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.SBS 511.XP 512.XP 513.XP
3.5 51 001.SBS 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP
Chapter 4: Differentiation Techniques
4.1 27 001 002.SBS 003 004 005 006 007 008 009 010 011 012 013 014 015 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
4.2 23 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP
4.3 24 001 002 003 004.SBS 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 501.XP
4.4 26 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.SBS
4.5 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018.SBS 019 020
Chapter 5: Derivative Applications
5.1 27 001.SBS 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 501.XP 502.XP 503.XP 504.XP
5.2 30 001 002 003 004 005 006 007 009.SBS 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP
5.3 32 001.SBS 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP
5.4 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015.SBS 016 017 018 019 020
Chapter 6: The Integral
6.1 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020.SBS 501.XP 502.XP
6.2 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019.SBS 020 501.XP 502.XP
6.3 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP.SBS 502.XP
6.4 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.SBS
6.5 23 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP.SBS
Chapter 7: Advanced Integration Techniques and Applications
7.1 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 501.XP 502.XP 503.XP 504.XP
7.2 31 001 002 003.SBS 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
7.3 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
7.4 20 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015.SBS 016 017 018 019 020
Chapter 8: Multivariable Functions and Partial Derivatives
8.1 21 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015.SBS 017 018 019 020 501.XP 502.XP
8.2 22 001 002 003 004 005 006 007 008 009 010 011 012 013.SBS 014 015 016 017 018 019 020 501.XP 502.XP
8.3 22 001.SBS 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 501.XP 502.XP 503.XP
8.4 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014.SBS 015
Total 835