Rotational Equilibrium Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

Procedure A: Balancia	ng torques
-----------------------	------------

Position of center of mass of meter stick = _____

Data Table 1

	Mass (g)	Lever arm (cm)	Torque $(g \cdot cm^2/s^2)$ (include sign)
m_1			
m_2			
m_3			predicted =

F	redicted	value	of	x_2	=	

Experimental value of $x_3 = \underline{\hspace{1cm}}$

Percent difference between predicted and experimental values of $x_3 =$ _______ %

Are the predicted and experimental values of x_3 in close agreement? (A difference of $\pm 3\%$ would be considered acceptable in this situation.)

Circle one: Yes No

CHECKPOINT 1: Set-up and calculations

Procedure B: Finding the Mass of the Meter Sti-
--

Draw a sketch of the experimental set-up with appropriate labels in the space below.

Data Table 2

	Mass (g) (g)	Lever Arm	Torque $(g \cdot cm^2/s^2)$ (include sign)
m_1			
m_2			predicted =

	_					
Dradiated	*** ** *	of mooga	of monton	atial.	200	
Predicted	value	or mass	or meter	SLICK	$m_{2,\text{predicted}}$	=
	,	OI III	01 1110001	COLULE.	Z.Dredicted	

Experimental value of mass of meter stick: $m_{2,exp} =$

Percent difference between $m_{2,\text{predicted}}$ and $m_{2,\text{exp}} =$ _______ %

Are the predicted and experimental values of m_3 in close agreement? (A difference of $\pm 3\%$ would be considered acceptable in this situation.)

Circle one: Yes No

CHECKPOINT 2: Diagram, uncertainty formula, set-up, and calculations

Procedure	C: Determi	ning an	unknown	mass
-----------	------------	---------	---------	------

Draw a sketch of the experimental set-up with appropriate labels in the space below.

Data Table 3

	Mass (g)	Lever Arm	Torque $(g \cdot cm^2/s^2)$
	(g)	x (cm)	(include sign)
m_1			
m_2			
m_3			predicted =

Predicted value of mass of shot plus bucket: $m_{3,predicted} =$

Experimental value of mass of shot plus bucket: $m_{3,exp} =$

Percent difference between $m_{3,\text{predicted}}$ and $m_{3,\text{exp}} =$ _______ %

Are the predicted and experimental values of m_3 in close agreement? (A difference of $\pm 10\%$ would be considered acceptable in this situation.)

Circle one: Yes No

CHECKPOINT 3: Diagram, set-up, and calculations