Lab Investigation 8 - What shapes do molecules form?

Lewis dot structures help us predict covalent bonding patterns as well as locate non-bonding pairs of electrons on a molecule. Given a correct Lewis dot structure we can predict the shape of a molecule using Valence Shell Electron Pair Repulsion theory. Predicting the shape of a molecule is important for understanding how that molecule interacts with other molecules such as enzymes or antibiotics. Finally, knowing the bonding and the shape of a molecule enables us to predict polarity. Polarity is vital to understanding how molecules interact with each other.

In this laboratory exercise you will have the opportunity to use models to build molecules of all shapes and bonding. You will predict the shape of molecules using your model.

Question 1

First, we will become familiar with the model kit by constructing the 5 basic shapes for compounds in which all electrons are involved in bonds. Construct each of the models below. A is the central atom in each case.

Formula	Model Pieces	Electron Pair Geometry
AB ₂	1 silver, 2 white	Linear
AB ₃	1 brown, 3 white	Trigonal Planar
AB ₄	1 black, 4 white	Tetrahedral
AB ₅	1 brown, 5 white	Trigonal Bipyramidal
AB ₅	1 silver, 6 white	Octahedral

Question 2

The electron pairs around a central atom will always have one of the five basic shapes you made models of in question 1. If one or more of the electron pairs is non-bonding, we describe the shape of the molecule based on the relative position of the bonding groups. This is called the **molecular shape** as opposed to the **electron pair geometry**. We will systematically look at the effect of a lone pair of electrons on each type of geometry. The letter E indicates a non-bonding pair of electrons. Construct a model for each formula; you can just use an empty bond for the lone pair. Fill in the name for the molecular shape.

	Central Atom	Bonding	Nonbonding	Electron Pair	
Formula	Color	Atoms	Electron Pairs	Geometry	Molecular Shape
	Silver	2	0	Linear	
AB ₂					
AB₃	Brown	3	0	Trigonal Planar	
AB ₂ E		2	1		
AB ₄	Black	4	0	Tetrahedral	
AB ₃ E		3	1		
AB ₂ E ₂		2	2		
AB ₅	Brown	5	0	Trigonal Bipyramidal	
AB ₄ E		4	1	2.07.0	
AB ₃ E ₂		3	2		
AB ₂ E ₃		2	3		
AB ₆	Silver	6	0	Octahedral	
AB5E		5	1]	
AB ₄ E ₂		4	2		

Question 3

Use the set of molecular models to construct each of the following molecules. Identify each of the items listed.

 $\mathbf{a} \quad \mathrm{BeCl}_2$

 $\odot 2011$ Advanced Instructional Systems, Inc. and Joi Phelps Walker

 $\mathbf{c} \quad \mathrm{HCN}$

 \mathbf{d}

$H - C \equiv N$:	
Bonding Atoms	
Non-bonding Electron Pairs	
Electron Pair Geometry	
Molecular Shape	
Polarity	
$XeCl_2$	
: Cl—Xe—Cl:	
Bonding Atoms	
Non-bonding Electron Pairs	
Electron Pair Geometry	
Molecular Shape	
Polarity	

Explain the difference in polarity for HCN and CO_2 .

There are two types of linear molecules. How are they different?

Question 4

Use the set of molecular models to construct each of the following molecules. Identify each of the items listed.

 $\mathbf{a} \quad \mathrm{SO}_2$

:ö=s=ö:

Bonding Atoms	
Non-bonding Electron Pairs	
Electron Pair Geometry	
Molecular Shape	
Polarity	
H_2S	
н— <u>з</u> —н	
Bonding Atoms	
Non-bonding Electron Pairs	
Electron Pair Geometry	
Molecular Shape	
Polarity	

There are two types of bent molecules. How are they different?

Question 5

Use the set of molecular models to construct each of the following molecules. Identify each of the items listed.

 \mathbf{a} SiF₄

 \mathbf{b}

:F: :F—Si—F: :F: :F:

Bonding Atoms Non-bonding Electron Pairs Electron Pair Geometry Molecular Shape Polarity \mathbf{b} XeF₄ :F: :F-Xe-F: :F: Bonding Atoms Non-bonding Electron Pairs Electron Pair Geometry Molecular Shape Polarity SF_4 :F: :F: Bonding Atoms Non-bonding Electron Pairs Electron Pair Geometry Molecular Shape Polarity

Why are two molecules nonpolar and one molecule polar?

С

Question 6

Use the set of molecular models to construct each of the following molecules. Identify each of the items listed.

a NO_3^{-1}

С

$$\begin{bmatrix} :\ddot{\mathbf{0}}:\\ |\\ :\ddot{\mathbf{0}}=\mathbf{N}-\ddot{\mathbf{0}}:\end{bmatrix}^{1-}$$

Bonding Atoms Non-bonding Electron Pairs Electron Pair Geometry Molecular Shape Polarity \mathbf{b} PF₃ :F: :**F**—**P**—**F**: Bonding Atoms Non-bonding Electron Pairs Electron Pair Geometry Molecular Shape Polarity CH_2O ö: Н−С−Н Bonding Atoms Non-bonding Electron Pairs _____ Electron Pair Geometry Molecular Shape Polarity

©2011 Advanced Instructional Systems, Inc. and Joi Phelps Walker

What makes trigonal pyramidal and trigonal planar molecules different?

Why are two molecules polar and one molecule nonpolar?