Answer to Essential Question 10.6: The correct ranking is $3>1>2$. In the rotational inertia equation, the distance from the axis to the ball (the length of the rod) is squared, while the mass is not. Thus, changing the length by a factor of 2 changes the rotational inertia by a factor of 4 , whereas changing the mass by a factor of 2 changes the rotational inertia by only a factor of 2 .

10-7 An Example Problem Involving Rotational Inertia

Our measure of inertia for rotational motion is somewhat more complicated than inertia for straight-line motion, which is just mass. Consider the following example.

EXAMPLE 10.7 - Spinning the system.

Three balls are connected by light rods. The mass and location of each ball are:
Ball 1 has a mass M and is located at $x=0, y=0$.
Ball 2 has a mass of $2 M$ and is located at $x=+3.0 \mathrm{~m}, y=+3.0 \mathrm{~m}$.
Ball 3 has a mass of $3 M$ and is located at $x=+2.0 \mathrm{~m}, y=-2.0 \mathrm{~m}$.
Assume the radius of each ball is much smaller than 1 meter.
(a) Find the location of the system's center-of-mass.
(b) Find the system's rotational inertia about an axis perpendicular to the page that passes through the system's center-of-mass.
(c) Find the system's rotational inertia about an axis parallel to, and 2.0 m from, the axis through the center-of-mass.

SOLUTION

Let's begin, as usual, by drawing a diagram of the situation. The diagram is shown in Figure 10.19.
(a) To find the location of the system's center-of-mass, let's apply Equation 6.3. To find the x-coordinate of the system's center-ofmass:
$X_{C M}=\frac{x_{1} m_{1}+x_{2} m_{2}+x_{3} m_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(0) M+(+3.0 \mathrm{~m})(2 M)+(+2.0 \mathrm{~m})(3 M)}{M+2 M+3 M}=\frac{(+12.0 \mathrm{~m}) M}{6 M}=+2.0 \mathrm{~m}$
The y-coordinate of the system's center-of-mass is given by:
$Y_{C M}=\frac{y_{1} m_{1}+y_{2} m_{2}+y_{3} m_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(0) M+(+3.0 \mathrm{~m})(2 M)+(-2.0 \mathrm{~m})(3 M)}{M+2 M+3 M}=\frac{(0) M}{6 M}=0$.
(b) To find the system's rotational inertia about an axis through the center-of-mass we can find the rotational inertia for each ball separately, using $I=M L^{2}$, and then simply add them to find the total rotational inertia. Figure 10.20 is helpful for seeing where the different L values come from.

Figure 10.20: The center-of-mass of the system is marked at $(+2 \mathrm{~m}, 0)$. The axis of rotation passes through that point. The dark lines show how far each ball is from the axis of rotation.

For ball $1, L^{2}=(2.0 \mathrm{~m})^{2}=4.0 \mathrm{~m}^{2}$ so $I_{1}=M L^{2}=\left(4.0 \mathrm{~m}^{2}\right) M$.
For ball $2, L^{2}=10 \mathrm{~m}^{2}$ so $I_{2}=2 M L^{2}=\left(20 \mathrm{~m}^{2}\right) M$.
For ball $3, L^{2}=4.0 \mathrm{~m}^{2}$ so $I_{3}=3 M L^{2}=\left(12 \mathrm{~m}^{2}\right) M$.

The total rotational inertia is the sum of these three values, $\left(36 \mathrm{~m}^{2}\right) M$.
(c) To find the rotational inertia through an axis parallel to the first axis and 2.0 m away from it, let's choose a point for this second axis to pass through. A convenient point is the origin, $x=0, y=0$. Figure 10.21 shows where the L values come from in this case.

Repeating the process we followed in part (b) gives:
For ball $1, L^{2}=0$ so $I_{1}^{\prime}=0$.
For ball $2, L^{2}=18 \mathrm{~m}^{2}$ so $I_{2}^{\prime}=2 M L^{2}=\left(36 \mathrm{~m}^{2}\right) M$.
For ball $3, L^{2}=8.0 \mathrm{~m}^{2}$ so $I_{3}^{\prime}=3 M L^{2}=\left(24 \mathrm{~m}^{2}\right) M$.

The total rotational inertia is the sum of these three
Figure 10.21: The axis of rotation now passes through the ball of mass M at the origin. The red lines show how far the other two balls are from the axis of rotation. values, $\left(60 \mathrm{~m}^{2}\right) M$.

Related End-of-Chapter Exercises: 29, 31.

Does it matter which point the second axis passes through? What if we had used a different point, such as $x=+2.0 \mathrm{~m}, y=-2.0 \mathrm{~m}$, or any other point 2.0 m from the center-of-mass? Amazingly, it turns out that it doesn't matter. Any axis parallel to the axis through the center-ofmass and 2.0 m from it gives a rotational inertia of $\left(60 \mathrm{~m}^{2}\right) M$. It turns out that the rotational inertia of a system is minimized when the axis goes through the center-of-mass, and the rotational inertia of the system about any parallel axis a distance h from the axis through the center-of-mass can be found from

$$
I=I_{C M}+m h^{2}, \quad(\text { Equation } 10.11: \text { The parallel-axis theorem })
$$

where m is the total mass of the system.
Let's check the parallel-axis theorem using our results from (b) and (c). In part (b) we found that the rotational inertia about the axis through the center-of-mass is $I_{C M}=\left(36 \mathrm{~m}^{2}\right) M$. The mass of the system is $m=6 M$ and the second axis is $h=2.0 \mathrm{~m}$ from the axis through the center-of-mass. This gives $I=\left(36 \mathrm{~m}^{2}\right) M+6 M(2.0 \mathrm{~m})^{2}=\left(60 \mathrm{~m}^{2}\right) M$, as we found above.

Essential Question 10.7: To find the total mass of a system of objects, we simply add up the masses of the individual objects. To find the total rotational inertia of a system of objects, can we follow a similar process, adding up the rotational inertias of the individual objects.

